计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (24): 205-211.DOI: 10.3778/j.issn.1002-8331.2106-0517
曾爱博,陈优广
ZENG Aibo, CHEN Youguang
摘要: 针对图像检索方法中二阶注意力模块使用全局特征之间的联系所生成的特征存在大量冗余信息,以及集成机制中各分支不能充分训练的问题,提出一种基于多注意力集成的图像检索方法。该方法利用在图像分类任务中表现良好的独立自注意力模块捕捉局部特征之间的联系,生成质量更高的特征以用于图像检索。该方法提出一个多注意力集成框架,在各注意力分支中分别利用独立自注意力模块产生相应的高效图像特征,并通过有效结合产生最终的图像特征。多注意力集成框架利用最终图像特征的排序损失、各注意力分支之间的差异损失及各分支的图像分类损失对模型进行联合训练,使各分支能得到充分训练。在CUB200-2011及CARS196图像检索数据集上的实验表明,所提方法可以有效提高检索精度。