计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (23): 245-253.DOI: 10.3778/j.issn.1002-8331.2105-0450
龚思聪,徐洁,万鸣华
GONG Sicong, XU Jie, WAN Minghua
摘要: 样本点的边界信息对于分类具有重要意义。针对于边界Fisher分析(MFA)和局部敏感判别分析(LSDA)构造本征图和惩罚图所利用的样本点边界信息,在一些情况下并不能很好地表征不同类样本点的可分性,提出了一种新的图嵌入降维算法——边界流形嵌入(MME)。MME算法根据样本点的标签信息,寻找距离每个样本点最近的异类边界子流形,再返回本类中寻找距离异类边界子流形最近的同类边界子流形,从而定义出不同类样本间密切联系的同类边界邻域和异类边界邻域。通过最大化所有成对的边界子流形之间的距离,MME算法可以得到更具有鉴别意义的低维特征空间。同时,MME算法能将徘徊在边界的离群点收入到边界邻域里,这对减弱离群点给算法带来的负面的影响有一定的帮助。在人脸数据库上的实验结果表明了MME算法提取的低维特征能够提升分类的准确率。