计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (20): 197-205.DOI: 10.3778/j.issn.1002-8331.2203-0266
方金生,朱古沛
FANG Jinsheng, ZHU Gupei
摘要: 在基于深度学习的图像超分辨率重建领域,通过扩大网络规模以提高性能将导致计算资源损耗增加。为此,提出了一种轻量级的基于金字塔池化注意力机制网络(light-weighted pyramid pooling-based attention network,LiPAN),该算法模型由融合注意力机制的信息蒸馏块、多层金字塔池化结构和反向注意力融合模块组成。注意力机制确保了网络对重要特征的提取,金字塔池化结构可获取更多的上下文信息,得到更准确的重建结果,蒸馏结构的引入可有效地提高网络性能并减少网络参数。与目前主流的轻量级网络模型相比,提出的LiPAN模型在Set5、Set14、BSD100及Urban100四个公共数据集分别进行2倍、3倍和4倍下采样重建并定量评估,获得最优峰值信噪比和结构相似度。由此表明,提出的LiPAN在网络模型参数与当前主流的轻量级网络相当的情况下,具有更优的超分辨率重建性能。