计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (20): 16-27.DOI: 10.3778/j.issn.1002-8331.2204-0382
王道累,肖佳威,李建康,朱瑞
WANG Daolei, XIAO Jiawei, LI Jiankang, ZHU Rui
摘要: 三维重建技术常用于自动驾驶、机器人、无人机和增强现实等领域。视差估计是三维重建的关键步骤,随着数据集的增加、硬件和网络模型的发展,深度学习视差估计模型被广泛使用并取得良好效果。然而,这些方法常用室外场景的物体,很少使用在室内场景的数据集中。回顾了双目视差估计的深度学习方法,选用5种深度学习网络:PSMNet(pyramid stereo matching network)、GA-Net(guided aggregation network)、LEAStereo(hierarchical neural architecture search for deep stereo matching)、DeepPruner(learning efficient stereo matching via differentiable patchmatch)、BGNet(bilateral grid learning for stereo matching networks),将其运用在一套真实世界的街景数据集(KITTI2015)和两套室内场景数据集(Middlebury2014、Instereo2K);分析各模型搭建方法,评估深度学习在室内场景影像视差估计中的性能,并与传统的SGM方法进行比较。针对深度学习视差估计方法的研究内容,指出其面临的问题及挑战。