计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (18): 26-42.DOI: 10.3778/j.issn.1002-8331.2202-0008
胡春生,李国利,赵勇,成芳娟
出版日期:
2022-09-15
发布日期:
2022-09-15
HU Chunsheng, LI Guoli, ZHAO Yong, CHENG Fangjuan
Online:
2022-09-15
Published:
2022-09-15
摘要: 智能制造背景下,旋转机械工况更加复杂,运行条件更加严峻,设备的运行状态监测与故障诊断更加重要。变工况条件下,轴承振动信号存在幅值变、脉动冲击间隔、采样相位不恒定和信号噪声污染等特点,传统滚动轴承故障诊断方法的应用受到了限制。针对变工况条件下的轴承故障诊断技术,发展了以阶次跟踪、时频分析、随机振动以及混沌理论等人工提取特征的信号解调与分析方法、以卷积神经网络、自编码器与深度置信网络为代表的深度学习方法以及迁移学习方法。回顾近五年变工况轴承故障诊断领域的进展,从算法原理、算法优化以及算法实际应用等角度,详细介绍几种当前主流的变工况故障诊断方法,讨论各类算法的优势不足及适用场景,为后续的研究指明方向。
胡春生, 李国利, 赵勇, 成芳娟. 变工况滚动轴承故障诊断方法综述[J]. 计算机工程与应用, 2022, 58(18): 26-42.
HU Chunsheng, LI Guoli, ZHAO Yong, CHENG Fangjuan. Summary of Fault Diagnosis Methods for Rolling Bearings Under Variable Working Conditions[J]. Computer Engineering and Applications, 2022, 58(18): 26-42.
[1] 杜小磊,陈志刚,许旭,等.改进深层小波自编码器的轴承故障诊断方法[J].计算机工程与应用,2020,56(5):263-269. DU X L,CHEN Z G,XU X,et al.Method of improved deep wavelet auto-encoder in bearing fault diagnosis[J].Computer Engineering and Applications,2020,56(5):263-269. [2] 曹浩,陈里里,司吉兵,等.奇异值分解和稀疏自编码器的轴承故障诊断[J].计算机工程与应用,2019,55(20):257-262. CAO H,CHEN L L,SI J B,et al.Singular value decomposition and sparse automatic encoder for bearing fault diagnosis[J].Computer Engineering and Applications,2019,55(20):257-262. [3] 王贡献,张淼,胡志辉,等.基于多尺度均值排列熵和参数优化支持向量机的轴承故障诊断[J].振动与冲击,2022,41(1):221-228. WANG G X,ZHANG M,HU Z H,et al.Bearing fault diagnosis based on multi-scale mean permutation entropy and parametric optimization SVM[J].Journal of Vibration and Shock,2022,41(1):221-228. [4] 金江涛,许子非,李春等.基于深度学习与混沌特征融合的滚动轴承故障诊断[J].控制理论与应用,2022,39(1):109-116. JIN J T,XU Z F,LI C,et al.Rolling bearing fault diagnosis based on deep learning and chaotic feature fusion[J].Control Theory & Applications,2022,39(1):109-116. [5] 唐诗尧,何佳,任锦胜,等.基于频谱包络改进的EWT方法的滚动轴承故障诊断研究[J].可再生能源,2022,40(1):60-66. TANG S Y,HE J,REN J S,et al.Research on fault diagnosis of rolling bearings based on improved EWT method of spectrum envelope[J].Renewable Energy Resources,2022,40(1):60-66. [6] 于湘,方玉峰,高煜,等.基于SVD和SET的滚动轴承故障诊断研究[J].机电工程,2021,38(12):1586-1591. YU X,FANG Y F,GAO Y,et al.Fault diagnosis of rolling bearings based on SVD and SET[J].Journal of Mechanical & Electrical Engineering,2021,38(12):1586-1591. [7] 张霆,张友鹏.基于EMD小波包和ANFIS的滚动轴承故障诊断[J].计算机工程与应用,2013,49(21):230-234. ZHANG T,ZHANG Y P.Application of EMD-wavelet packet and ANFIS for rolling bearing fault diagnosis[J].Computer Engineering and Applications,2013,49(21):230-234. [8] 王勉,刘勇.基于时移多尺度散布熵和SVM的滚动轴承故障诊断方法[J].机械设计与研究,2021,37(5):83-87. WANG M,LIU Y.Fault diagnosis method of rolling bearing based on time-lapse multi-scale scatter entropy and SVM[J].Mechanical Design and Research,2021,37(5):83-87. [9] 张伟,张广帅,王连彪.基于CNN-GRU网络的轴承故障检测算法[J].工业仪表与自动化装置,2021(6):88-91. ZHANG W,ZHANG G S,WANG L B.Bearing fault detection algorithm based on CNN-GRU network[J].Industrial Instrumentation and Automation,2021(6):88-91. [10] 毕鹏远.一种基于Conv-LSTM的滚动轴承故障诊断方法[J].机电工程技术,2021,50(11):113-115. BI P Y.A rolling bearing fault diagnosis method based on conv-LSTM[J].Mechanical & Electrical Engineering Technology,2021,50(11):113-115. [11] 林济铿,任怡睿,闪鑫,等.基于Logistic回归深层神经网络的电力系统故障概率诊断[J].天津大学学报(自然科学与工程技术版),2021,54(2):186-195. LIN J K,REN Y R,SHAN X,et al.Power system fault probability diagnosis based on logistic regression deep neural network[J].Journal of Tianjin University(Natural Science and Engineering Technology Edition),2021,54(2):186-195. [12] 杨宇,曾国辉,黄勃.基于双树复小波包和改进SVM的轴承故障诊断[J].计算机工程与应用,2020,56(17):231-235. YANG Y,ZENG G H,HUANG B.Fault diagnosis method of bearings based on dual-tree complex wavelet packet transform and improved SVM[J].Computer Engineering and Applications,2020,56(17):231-235. [13] 孙志诚,沈长青,王富东,等.基于时频分析与人工神经网络的轴承诊断研究[J].机电一体化,2017,23(4):21-27. SUN Z C,SHEN C Q,WANG F D,et al.Bearing fault diagnosis based on time-frequency analysis and artificial neural network[J].Mechatronics,2017,23(4):21-27. [14] 王文青,李光鑫,陈勇,等.一种基于EMDFICA-CNN的滚动轴承故障诊断方法[J].噪声与振动控制,2021,41(4):94-100. WANG W Q,LI G X,CHEN Y,et al.A fault diagnosis method for rolling bearings based on EMDFICA-CNN[J].Noise and Vibration Control,2021,41(4):94-100. [15] 李舜酩,侯钰哲,李香莲.滚动轴承振动故障时频域分析方法综述[J].重庆理工大学学报(自然科学),2021,35(10):85-93. LI S M,HOU Y Z,LI X L.Review on time-frequency-domain analysis methods for vibration faults of rolling bearings[J].Journal of Chongqing University of Technology(Natural Science),2021,35(10):85-93. [16] 陈昊,张永祥,黄包裕.基于阶次跟踪的变转速工况轴承故障诊断方法[J].轴承,2021(12):49-55. CHEN H,ZHANG Y X,HUANG B Y.Fault diagnosis method for bearings under variable speed conditions based on order tracking method[J].Bearings,2021(12):49-55. [17] 秦文强.基于阶次分析的变转速下齿轮故障分析方法研究[D].哈尔滨:哈尔滨理工大学,2021. QIN W Q.Research on gear failure analysis method under variable speed based on order analysis[D].Harbin:Harbin University of Science and Technology,2021. [18] 张亢,程军圣.基于LMD和阶次跟踪分析的滚动轴承故障诊断[J].振动.测试与诊断,2016,36(3):586-591. ZHANG K,CHENG J S.Roller bearing fault diagnosis based on LMD and order tracking analysis[J].Journal of Vibration,Measurement & Diagnosis,2016,36(3):586-591. [19] FARHAT M H,CHIEMENTIN X,CHAARI F,et al.Order-based identification of bearing defectsunder variable speed condition[J].Applied Sciences,2021,11(9). [20] 杨武成.阶次跟踪和Hilbert包络解调在滚动轴承故障诊断中应用[J].机械科学与技术,2017,36(12):1873-1876. YANG W C.Application of order tracking and hilbert envelope demodulation in rolling bearing fault diagnosis[J].Mechanical Science and Technology for Aerospace Engineering,2017,36(12):1873-1876. [21] 尹学慧.基于Envelope包络与阶次分析的滚动轴承故障诊断[D].太原:中北大学,2019. YIN X H.Fault diagnosis of rolling bearing based on Envelope and order analysis[D].Taiyuan:North University of China,2019. [22] 王平,尹少平,贾护民,等.基于EEMD与HHT的无转速计阶比分析方法[J].机械设计与制造工程,2021,50(5):52-56. WANG P,YIN S P,JIA H M,et al.Order analysis method without tachometer based on EEMD and HHT[J].Mechanical Design and Manufacturing Engineering,2021,50(5):52-56. [23] WANG T A,LIANG M,LI J Y,et al.Rolling element bearing fault diagnosis via fault characteristic order(FCO) analysis[J].Mechanical Systems and Signal Processing,2014,45(1). [24] HUANG H,BADDOUR N,LIANG M.Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction[J].Journal of Sound and Vibration,2018,414. [25] ZHU D C,ZHANG Y X,ZHU Q W.Fault diagnosis method for rolling element bearings under variable speed based on TKEO and fast-SC[J].Journal of Failure Analysis and Prevention,2018,18(1):2-7. [26] ZHAO M,LIN J,XU X Q,et al.Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds[J].Sensors,2013,13(8). [27] URBANEK J,BARSZCZ T,ANTONI J.A two-step procedure for estimation of instantaneous rotational speed with large fluctuations[J].Mechanical Systems and Signal Processing,2013,38(1). [28] FENG Z P,CHEN X W,WANG T Y.Time-varying demodulation analysis for rolling bearing fault diagnosis under variable speed conditions[J].Journal of Sound and Vibration,2017,400. [29] 王晓龙,唐贵基.一种基于连续小波变换的滚动轴承早期故障诊断新方法[J].推进技术,2016,37(8):1431-1437. WANG X L,TANG G J.A new diagnosis method based on continuous wavelet transform for incipient fault of rolling bearing[J].Journal of Propulsion Technology,2016,37(8):1431-1437. [30] 杨蕊,李宏坤,贺长波,等.利用最优小波尺度循环谱的滚动轴承早期故障特征提取[J].机械工程学报,2018,54(17):208-217. YANG R,LI H K,HE C B,et al.Rolling element bearing incipient fault feature extraction based on optimal wavelet scales cyclic spectrum[J].Journal of Mechanical Engineering,2018,54(17):208-217. [31] 陈科百.基于小波变换的滚动轴承故障诊断[J].内燃机与配件,2020(2):37-39. CHEN K B.Fault diagnosis of rolling bearing based on wavelet transform[J].Internal Combustion Engine and Parts,2020(2):37-39. [32] LI P,KONG F R,HE Q G,et al.Multiscale slope feature extraction for rotating machinery fault diagnosis using wavelet analysis[J].Measurement,2013,46(1). [33] 姚峰林,谢长开,吕世宁,等.基于小波包变换和ELM的滚动轴承故障诊断研究[J].安全与环境学报,2021,21(6):2466-2472. YAO F L,XIE C K,Lü S N,et al.Research on fault diagnosis of rolling bearing based on wavelet packet transform and ELM[J].Journal of Safety and Environment,2021,21(6):2466-2472. [34] 李志农,刘跃凡,胡志峰,等.经验小波变换-同步提取及其在滚动轴承故障诊断中的应用[J].振动工程学报,2021,34(6):1284-1292. LI Z N,LIU Y F,HU Z F,et al.Empirical wavelet transform-synchronous extraction and its application in fault diagnosis of rolling bearings[J].Journal of Vibration Engineering,2021,34(6):1284-1292. [35] 张雄,张逸轩,张明,等.基于小波包散布熵与Meanshift概率密度估计的轴承故障识别方法研究[J].湖南大学学报(自然科学版),2021,48(8):133-140. ZHANG X,ZHANG Y X,ZHANG M,et al.Research on bearing fault identification method based on wavelet packet dispersion entropy and meanshift probability density estimation[J].Journal of Hunan University(Natural Science Edition),2021,48(8):133-140. [36] RODRIGUEZ N,ALVAREZ P,BARBA L,et al.Combining multi-scale wavelet entropy and kernelized classification for bearing multi-fault diagnosis[J].Entropy,2019,21(2). [37] 孙英强,杨庆东,许博.基于小波包和MEA-BP的滚动轴承状态分析[J].北京信息科技大学学报(自然科学版),2021,36(6):25-29. SUN Y Q,YANG Q D,XU B.Analysis of rolling bearing state based on the wavelet packet and MEA-BP[J].Journal of Beijing Information Science and Technology University(Natural Science Edition),2021,36(6):25-29. [38] 刘颖,陶建峰,黄武涛,等.小波包能量与CNN相结合的滚动轴承故障诊断方法[J].机械设计与制造,2021(11):127-131. LIU Y,TAO J F,HUANG W T,et al.Rolling bearing fault diagnosis method based on the combination of wavelet packet energy and CNN[J].Mechanical Design and Manufacture,2021(11):127-131. [39] 戴连铭,李春华.基于小波包能量熵与SVM的微电网故障诊断[J].计算机与数字工程,2021,49(10):2126-2132. DAI L M,LI C H.Microgrid fault diagnosis based on wavelet packet energy entropy and SVM[J].Computer and Digital Engineering,2021,49(10):2126-2132. [40] 史东海,王洁,崔诚.基于EMD和PCA的滚动轴承故障诊断研究[J].汽车实用技术,2021,46(23):94-96. SHI D H,WANG J,CUI C.Research on fault diagnosis of rolling bearing based on EMD and PCA[J].Automotive Applied Technology,2021,46(23):94-96. [41] 何雷,刘溯奇.EMD-AR谱分析和SVM的变速箱故障诊断[J].机械设计与制造,2021(11):56-59. HE L,LIU S Q.Gearbox fault diagnosis based on EMD-AR spectrum analysis and SVM[J].Mechanical Design and Manufacturing,2021(11):56-59. [42] 杨建华,韩帅,张帅,等.强噪声背景下滚动轴承微弱故障特征信号的经验模态分解[J].振动工程学报,2020,33(3):582-589. YANG J H,HAN S,ZHANG S,et al.Empirical mode decomposition of weak fault characteristic signal of rolling bearing under strong noise background[J].Journal of Vibration Engineering,2020,33(3):582-589. [43] 任学平,霍灿鹏.基于EMD-AR谱和GA-BP的滚动轴承故障诊断研究[J].机电工程,2021,38(7):892-896. REN X P,HUO C P.Fault diagnosis of rolling bearing based on EMD-AR spectrum and GA-BP[J].Journal of Mechanical and Electrical Engineering,2021,38(7):892-896. [44] 谷豪,李山,李文帅,等.基于集成经验模态分解和最小二乘双支持向量回归机的风速预测算法研究[J].供用电,2022,39(1):88-96. GU H,LI S,LI W S,et al.Research on wind speed prediction method based on EEMD-LSTSVR[J].Distribution & Utilization,2022,39(1):88-96. [45] 王潇桐.基于EEMD模糊熵和支持向量机的轴承故障诊断方法[J].电气应用,2021,40(12):14-19. WANG X T.Bearing fault diagnosis method based on EEMD fuzzy entropy and support vector machine[J].Electrical Applications,2021,40(12):14-19. [46] BENZI R,SUTERA A,VULPIANI A.The mechanism of stochastic resonance[J].Journal of Physics A:Mathematical and General,1981,14(11):453-457. [47] 姜增辉,谢峰,王海宁.归一化变尺度随机共振的刀具状态监测[J].机械科学与技术,2020,39(10):1520-1525. JIANG Z H,XIE F,WANG H N.Condition monitoring of tools with normalized variable-scale stochastic resonance[J].Mechanical Science and Technology for Aerospace Engineering,2020,39(10):1520-1525. [48] 郑堂,李世平,程双江,等.为检测微弱周期信号对二次采样随机共振相关参数的研究[J].计量学报,2015,36(3):313-317. ZHENG T,LI S P,CHENG S J,et al.The research of related parameters in twice sampling stochastic resonance used in week signal detection[J].Acta Metrologica Sinica,2015,36(3):313-317. [49] 刘学,孙翱,李冬.基于双树复小波的遥测振动信号多尺度噪声调节随机共振分析[J].振动与冲击,2019,38(20):18-24. LIU X,SUN A,LI D.Multi-scale noise tuning stochastic resonance analysis of telemetry vibration signal based on double tree complex wavelet[J].Journal of Vibration and Shock,2019,38(20):18-24. [50] 彭敏玲.多尺度随机共振变换下的微弱信号检测分析[J].化工管理,2017(33):25-26. PENG M L.Detection and analysis of weak signals under multi-scale stochastic resonance transformation[J].Chemical Enterprise Management,2017(33):25-26. [51] ZHANG G,SONG Y,ZHANG T Q.Stochastic resonance in a single-well system with exponential potential driven by Levy noise[J].Chinese Journal of Physics,2017,55(1):85-95. [52] LIU W X,WANG Y J,LIU X.et al.Weak thruster fault detection for AUV based on stochastic resonance and wavelet reconstruction[J].Journal of Central South University,2016,23:2883-2895. [53] 田晶,周杰,王术光,等.基于自适应双稳态随机共振的中介轴承故障诊断方法[J].航空动力学报,2019,34(10):2237-2245. TIAN J,ZHOU J,WANG S G,et al.Fault diagnosis method of inter-shaft bearing based on adaptive bistable stochastic resonance[J].Journal of Aerospace Power,2019,34(10):2237-2245. [54] 尹进田,唐杰,刘丽,等.参数同步优化随机共振在牵引传动系统早期微弱故障诊断中的应用[J].振动与冲击,2021,40(17):234-240. YIN J T,TANG J,LIU L,et al.Application of parameter synchronous optimization stochastic resonance in early weak fault diagnosis of traction drive system[J].Journal of Vibration and Shock,2021,40(17):234-240. [55] 刘进军,冷永刚,张雨阳,等.势函数特征参数调节随机共振及动车轴承故障检测研究[J].振动与冲击,2019,38(13):26-33. LIU J J,LENG Y G,ZHANG Y Y,et al.Stochastic resonance with adjustable potential function characteristic parameters and its application in EMU bearing fault detection[J].Journal of Vibration and Shock,2019,38(13):26-33. [56] 谯自健,束学道.非对称势诱导随机共振增强机械重复瞬态提取[J].机械工程学报,2021,57(23):160-168. QIAO Z J,SHU X D.Stochastic resonance induced by asymmetric potentials enhanced mechanical repetitive transient extraction[J].Journal of Mechanical Engineering,2021,57(23):160-168. [57] 马强,王宇航,王智冲.基于三稳态随机共振的轴承故障诊断研究[J/OL].中国测试:1-7[2022-04-26].https://kns.cnki.net/kcms/detail/51.1714.TB.20220322.1749.026.html. MA Q,WANG Y H,WANG Z C.Bearing fault diagnosis based on tristable stochastic resonance[J/OL].China Measurement and Test:1-7[2022-04-26].https://kns.cnki.net/kcms/detail/51.1714.TB.20220322.1749.026.html. [58] 张刚,李红威.混合多稳态随机共振的故障信号检测[J].振动与冲击,2019,38(18):9-17. ZHANG G,LI H W.Hybrid tri-stable stochastic resonance system used for fault signal detection[J].Journal of Vibration and Shock,2019,38(18):9-17. [59] 王术光,田晶,周杰,等.基于AFSA优化级联随机共振的轴承故障诊断方法[J].航空发动机,2020,46(5):6-9. WANG S G,TIAN J,ZHOU J,et al.Bearing fault diagnosis method based on cascaded stochastic resonance optimized by AFSA[J].Aeroengine,2020,46(5):6-9. [60] LI Q Q,XU X M,YIN L Z,et al.Implication of two coupled tri-stable stochastic resonance in weak signal detection[J].Chinese Physics B,2018,27(3):034203. [61] 李伟,陈剑,陶善勇.自适应耦合周期势系统随机共振信号增强方法[J].吉林大学学报(工学版),2021,51(3):1091-1096. LI W,CHEN J,TAO S Y.Method of enhancing stochastic resonance signal of self-adaptive coupled periodic potential system[J].Journal of Jilin University(Engineering Edition),2021,51(3):1091-1096. [62] 张刚,吴瑕.基于Duffing与Van der Pol强耦合系统的随机共振研究及轴承故障诊断[J].振动与冲击,2020,39(19):266-276. ZHANG G,WU X.Stochastic resonance and bearing fault diagnosis based on a Duffing-Van der Pol strongly coupled system[J].Journal of Vibration and Shock,2020,39(19):266-276. [63] 张勇亮,李国林,张晓瑜.基于并联自适应随机共振的微弱信号检测方法[J].计算机工程与设计,2017,38(5):1324-1330. ZHANG Y L,LI G L,ZHANG X Y.Method of weak signal detection based on parallel self-adaptive stochastic resonance[J].Computer Engineering and Design,2017,38(5):1324-1330. [64] 刘彬.基于混沌理论的轨道车辆轴承故障识别[D].成都:西南交通大学,2018. LIU B.Fault identification of rail vehicle bearings based on chaos theory[D].Chengdu:Southwest Jiaotong University,2018. [65] 任学平,刘桐桐.用改进的Duffing理论判断轴承故障的微弱信号[J].噪声与振动控制,2014,34(1):173-177. REN X P,LIU T T.Detection of weak fault signals of bearings based on the improved duffing theory[J].Noise and Vibration Control,2014,34(1):173-177. [66] 李岭阳,王华庆,徐新韬,等.混沌振子在滚动轴承故障特征提取中的应用[J].动力学与控制学报,2016,14(2):177-181. LI L Y,WANG H Q,XU X T,et al.Application of chaotic oscillator in fault feature extraction of rolling bearings[J].Journal of Dynamics and Control,2016,14(2):177-181. [67] 刘彬,戴焕云.基于混沌理论的滚动轴承故障信号检测[J].机械制造与自动化,2019,48(4):173-175. LIU B,DAI H Y.Weak fault signal detection of rolling bearing based on chaos theory[J].Machinery Building and Automation,2019,48(4):173-175. [68] 李国正,张波.基于Duffing振子检测频率未知微弱信号的新方法[J].仪器仪表学报,2017,38(1):181-189. LI G Z,ZHANG B.Novel method for detecting weak signal with unknown frequency based on duffing oscillator[J].Chinese Journal of Scientific Instrument,2017,38(1):181-189. [69] 黄继尧,陈长兴,凌云飞,等.Duffing振子变尺度未知多频微弱信号提取方法研究[J].仪表技术与传感器,2019(5):113-117. HUANG J Y,CHEN C X,LING Y F,et al.Study on extraction method of multi-frequency weak signal with unknown variable scale of duffing oscillator[J].Instrument Technology and Sensors,2019(5):113-117. [70] 王鑫,胡天亮,习爽.基于卷积神经网络的轴承故障诊断方法[J].林业机械与木工设备,2021,49(10):50-54. WANG X,HU T L,XI S.Bearing fault diagnosis method based on convolutional neural network[J].Forestry Machinery and Woodworking Equipment,2021,49(10):50-54. [71] 张小刚,丁华,王晓波,等.深度残差网络在滚动轴承故障诊断中的研究[J].机械设计与制造,2022(1):77-80. ZHANG X G,DING H,WANG X B,et al.Study on fault diagnosis of rolling bearing by deep residual network[J].Mechanical Design and Manufacturing,2022(1):77-80. [72] GUO X J,CHEN L,SHEN C G.Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis[J].Measurement,2016,93. [73] XIA M,LI T,XU L,et al.Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J].IEEE/ASME Transactions on Mechatronics,2018,23(1):101-110. [74] 张西宁,刘书语,余迪,等.改进深度卷积神经网络及其在变工况滚动轴承故障诊断中的应用[J].西安交通大学学报,2021,55(6):1-8. ZHANG X N,LIU S Y,YU D,et al.Improved deep convolutional neural network with applications to bearing fault diagnosis under variable conditions[J].Journal of Xi’an Jiaotong University,2021,55(6):1-8. [75] 赵小强,梁浩鹏.使用改进残差神经网络的滚动轴承变工况故障诊断方法[J].西安交通大学学报,2020,54(9):23-31. ZHAO X Q,LIANG H P.Fault diagnosis method for rolling bearing under variable working conditions using improved residual neural network[J].Journal of Xi’an Jiaotong University,2020,54(9):23-31. [76] WU Z H,JIANG H K,LIU S W,et al.A deep ensemble dense convolutional neural network for rolling bearing fault diagnosis[J].Measurement Science and Technology,2021,32(10). [77] WANG F,JIANG H K,SHAO H D,et al.An adaptive deep convolutional neural network for rolling bearing fault diagnosis[J].Measurement Science and Technology,2017,28(9). [78] INCE T,KIRANYAZ S,EREN L,et al.Real-time motor fault detection by 1-D convolutional neural networks[J].IEEE Transactions on Industrial Electronics,2016,63(11). [79] 潘成龙,应雨龙.基于二维卷积神经网络的滚动轴承变工况故障诊断方法[J].上海电力大学学报,2022,38(1):29-34. PAN C L,YING Y L.A fault diagnosis method for rolling bearings under variable condition based on two-dimensional convolutional neural network[J].Journal of Shanghai Electric Power University of Electric Power,2022,38(1):29-34. [80] 陈里里,付志超,凌静,等.基于WPD-CNN二维时频图像的滚动轴承故障诊断[J].组合机床与自动化加工技术,2021(3):57-60. CHEN L L,FU Z C,LING J,et al.Rolling bearing fault diagnosis based on WPD-CNN two-dimensional time-frequency image[J].Modular Machine Tool & Automatic Manufacturing Technique,2021(3):57-60. [81] 张训杰,张敏,李贤均.基于二维图像和CNN-BiGRU网络的滚动轴承故障模式识别[J].振动与冲击,2021,40(23):194-201. ZHANG X J,ZHANG M,LI X J.Rolling bearing fault mode recognition based on 2D image and CNN-BiGRU[J].Journal of Vibration and Shock,2021,40(23):194-201. [82] 李巍华,单外平,曾雪琼.基于深度信念网络的轴承故障分类识别[J].振动工程学报,2016,29(2):340-347. LI W H,SHAN W P,ZENG X Q.Bearing fault identification based on deep belief network[J].Journal of Vibration Engineering,2016,29(2):340-347. [83] TAO J,LIU Y L,YANG D L,et al.Fault diagnosis of rolling bearing using deep belief networks[C]//Proceedings of the 2015 International Symposium on Material,Energy and Environment Engineering,2015. [84] 单外平,曾雪琼.基于深度信念网络的信号重构与轴承故障识别[J].电子设计工程,2016,24(4):67-71. SHAN W P,ZENG X Q.Signal reconstruction and bearing fault identification based on deep belief network[J].Electronic Design Engineering,2016,24(4):67-71. [85] 王圣杰,彭珍瑞,殷红.基于多传感器信号处理的齿轮箱轴承故障诊断[J].组合机床与自动化加工技术,2020(11):5-10. WANG S J,PENG Z R,YIN H.Fault diagnosis of gearbox bearing based on multi-sensor signal processing[J].Modular Machine Tool & Automatic Manufacturing Technique,2020(11):5-10. [86] 胡永涛.基于多特征融合及深度信念网络的轴承故障诊断[D].秦皇岛:燕山大学,2017. HU Y T.Bearing fault diagnosis based on multi-feature fusion and deep belief network[D].Qinhuangdao:Yanshan University,2017. [87] CHEN Z,LI W H.Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J].IEEE Transactions on Instrumentation and Measurement,2017,66(7). [88] GAN M,WANG C,ZHU C A.Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings[J].Mechanical Systems and Signal Processing,2016(5):92-104. [89] LIU M X,LI Y L,WANG Z.A propelled multiple fusion deep belief network for weld defects detection[C]//Proceedings of 2021 2nd International Conference on Control,Robotics and Intelligent System,2021:149-154. [90] 熊景鸣,潘林,朱昇,等.DBN与PSO-SVM的滚动轴承故障诊断[J].机械科学与技术,2019,38(11):1726-1731. XIONG J M,PAN L,ZHU S,et al.Bearing fault diagnosis based on deep belief networks and particle swarm optimization support vector machine[J].Mechanical Science and Technology for Aerospace Engineering,2019,38(11):1726-1731. [91] SHAO H D,JIANG H J,ZHANG H Z,et al.Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J].Mechanical Systems and Signal Processing,2018,100. [92] JIA F,LEI Y G,LIN J,et al.Deep neural networks:a promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J].Mechanical Systems and Signal Processing,2016,72/73(5):303-315. [93] YANG X,WANG S Y,HAN J L,et al.RSAMSR:a deep neural network based on residual self-encoding and attention mechanism for image super-resolution[J].Optik,2021,245. [94] 童靳于,罗金,郑近德.基于增强深度自编码网络的滚动轴承故障诊断方法[J].中国机械工程,2021,32(21):2617-2624. TONG J Y,LUO J,ZHENG J D.Rolling bearing fault diagnosis method based on enhanced deep auto-encoder network[J].China Mechanical Engineering,2021,32(21):2617-2624. [95] 王蕾蕾.基于深度自编码网络的轴承故障诊断研究[D].北京:华北电力大学,2019. WANG L L.Research on bearing fault diagnosis based on deep self-encoding network[D].Beijing:North China Electric Power University,2019. [96] SINNO J P,IVOR W,TSANG J.et al.Domain adaptation via transfer component analysis.[J].IEEE Transactions on Neural Networks,2011,22(2). [97] CHEN C,LI Z H,YANG J,et al.A cross domain feature extraction method based on transfer component analysis for rolling bearing fault diagnosis[C]//29th Chinese Control and Decision,2017:1187-1191. [98] LU W N,LIANG B,CHENG Y,et al.Deep model based domain adaptation for fault diagnosis[J].IEEE Transactions on Industrial Electronics,2017,64(3). [99] 吴静然,刘建华,崔冉.子域适应无监督轴承故障诊断[J].振动与冲击,2021,40(15):34-40. WU J R,LIU J H,CUI R.Sub-domain adaptive unsupervised bearing fault diagnosis[J].Journal of Vibration and Shock,2021,40(15):34-40. [100] 董绍江,朱朋,裴雪武,等.基于子领域自适应的变工况下滚动轴承故障诊断[J].吉林大学学报(工学版),2022(2):288-295. DONG S J,ZHU P,PEI X W,et al.Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation[J].Journal of Jilin University(Engineering and Technology Edition),2022(2):288-295. [101] SHEN C Q,WANG X,WANG D,et al.Dynamic joint distribution alignment network for bearing fault diagnosis under variable working conditions[J].IEEE Transactions on Instrumentation and Measurement,2021,70. [102] 杨春柳.基于卷积神经网络的多层域自适应滚动轴承故障诊断[J].电子测量与仪器学报,2021,35(2):122-129. YANG C L.Multi-layer domain adaptive rolling bearing fault diagnosis based on convolutional neural network[J].Journal of Electronic Measurement and Instrumentation,2021,35(2):122-129. [103] 杨冰如,李奇,陈良,等.基于ResNet和领域自适应的轴承故障诊断研究[J].测控技术,2021,40(12):31-39. YANG B R,LI Q,CHEN L,et al.Bearing fault diagnosis based on resnet and domain adaptation[J].Measurement and Control Technology,2021,40(12):31-39. [104] 杨春柳.基于CNN的域自适应滚动轴承故障诊断方法研究[D].昆明:昆明理工大学,2021. YANG C L.Research on CNN-based domain adaptive rolling bearing fault diagnosis method[D].Kunming:Kunming University of Science and Technology,2021. [105] LONG M S,WANG J M,DING G G,et al.Adaptation regularization:a general framework for transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(5):1076-1089. [106] LU N N,CHU F,QI H R,et al.A new domain adaption algorithm based on weights adaption from the source domain[J].IEEJ Transactions on Electrical and Electronic Engineering,2018,13(12). [107] TANG Z,BO L,LIU X F,et al.A semi-supervised transferable LSTM with feature evaluation for fault diagnosis of rotating machinery[J].Applied Intelligence,2022,52:1703-1717. [108] 郭亮,董勋,高宏力,等.无标签数据下基于特征知识迁移的机械设备智能故障诊断[J].仪器仪表学报,2019,40(8):58-64. GUO L,DONG X,GAO H L,et al.Feature knowledge transfer based intelligent fault diagnosis method of machines with unlabeled data[J].Chinese Journal of Scientific Instrument,2019,40(8):58-64. [109] YU X,CHEN W,WU C L,et al.Rolling bearing fault diagnosis based on domain adaptation and preferred feature selection under variable working conditions[J].Shock and Vibration,2021. [110] 薛辉.基于深度迁移学习的故障诊断方法研究[D].沈阳:沈阳理工大学,2021. XUE H.Research on fault diagnosis method based on deep transfer learning[D].Shenyang:Shenyang University of Science and Technology,2021. [111] ZHANG Z W,CHEN H H,LI S N,et al.A novel geodesic flow kernel based domain adaptation approach for intelligent fault diagnosis under varying working condition[J].Neurocomputing,2020,376. [112] 刘海宁,宋方臻,窦仁杰,等.小数据条件下基于测地流核函数的域自适应故障诊断方法研究[J].振动与冲击,2018,37(18):36-42. LIU H N,SONG F Z,DOU R J,et al.Domain adaptive fault diagnosis based on the geodesic flow kernel under small data condition[J].Journal of Vibration and Shock,2018,37(18):36-42. [113] 王肖雨,童靳于,郑近德,等.基于流形嵌入分布对齐的滚动轴承迁移故障诊断方法[J].振动与冲击,2021,40(8):110-116. WANG X Y,TONG J Y,ZHENG J D,et al.Transfer fault diagnosis for rolling bearings based on manifold embedded distribution alignment[J].Journal of Vibration and Shock,2021,40(8):110-116. [114] 童靳于,章青,夏晓舟,等.一种基于领域自适应的跨工况滚动轴承故障诊断新方法[J].固体力学学报,2021,42(3):267-276. TONG J Y,ZHANG Q,XIA X Z,et al.A new domain-adaptive method for fault diagnosis of rolling bearings under cross working conditions[J].Chinese Journal of Solid Mechanics,2021,42(3):267-276. [115] ZHANG R,TAO H Y,WU L F,et al.Transfer learning with neural networks for bearing fault diagnosis in changing working conditions[J].IEEE Access,2017,5. [116] SHAO S Y,STEPHEN M,PIERRE R Q,et al.Highly accurate machine fault diagnosis using deep transfer learning[J].IEEE Transactions on Industrial Informatics,2019,15(4). [117] ZHAO B,ZHANG X N,ZHAN Z H,et al.Deep multi-scale convolutional transfer learning network:a novel method for intelligent fault diagnosis of rolling bearings under variable working conditions and domains[J].Neurocomputing,2020,407:24-38. [118] 刘俊杰.基于迁移学习的滚动轴承故障诊断方法研究[D].成都:电子科技大学,2021. LIU J J.Research on fault diagnosis method of rolling bearing based on transfer learning[D].Chengdu:University of Electronic Science and Technology of China,2021. [119] WANG J,XIE J,ZHANG J,et al.A factor analysis based transfer learning method for gearbox diagnosis under various operating conditions[C]//2016 International Symposium on Flexible Automation(ISFA),2016:81-86. [120] HAN T,LIU C,YANG W G,et al.Deep transfer network with joint distribution adaptation:a new intelligent fault diagnosis framework for industry application[J].ISA Transactions,2020,97. [121] WEN L,GAO L,LI X Y.A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,49(1). [122] 胡明武.基于迁移学习的变工况下滚动轴承故障诊断方法研究[D].哈尔滨:哈尔滨理工大学,2019. HU M W.Research on fault diagnosis method of rolling bearing under variable working conditions based on transfer learning[D].Harbin:Harbin University of Science and Technology,2019. |
[1] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[2] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[3] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[4] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[5] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[6] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[7] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[8] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[9] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[10] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[11] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[12] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[13] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[14] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[15] | 张昊, 张小雨, 张振友, 李伟. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||