计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 71-83.DOI: 10.3778/j.issn.1002-8331.2202-0134
回立川,陈雪莲,孟嗣博
HUI Lichuan, CHEN Xuelian, MENG Sibo
摘要: 针对基本麻雀搜索算法(sparrow search algorithm,SSA)在处理复杂优化问题时存在的搜索空间不足、收敛速度慢和易陷入局部最优等问题,提出一种多策略混合的改进麻雀搜索算法(improved sparrow search algorithm based on multi-strategy mixing,IMSSA)。利用Sine混沌映射初始化麻雀个体位置,丰富种群多样性,解决种群分布不均匀、搜索空间不足等问题;引入带有惯性权重的多样性全局最优引导策略来加快收敛速度,调控算法的全局探索与局部开发能力;采用双样本学习策略使算法跳出局部最优,提高种群对解空间的搜索能力。通过测试函数对算法进行仿真实验,验证三种改进策略的有效性,并且进行Wilcoxon秩和检验和时间复杂度分析,结果表明IMSSA算法的各项性能均有显著提升。最后用算法优化支持向量机参数,建立轴承故障诊断模型,进一步证明了改进策略是可行有效的。