计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 111-122.DOI: 10.3778/j.issn.1002-8331.2012-0470
董博文,汪荣贵,杨娟,薛丽霞
DONG Bowen, WANG Ronggui, YANG Juan, XUE Lixia
摘要: 对样本所含信息的提取能力决定网络模型进行小样本分类的效果,为了进一步提高模型挖掘信息的能力,提出一种结合多尺度特征与掩码图网络的小样本学习方法。设计由1×1卷积、全局平均池化和跳跃连接组成的最小残差神经网络块,与卷积块拼接成特征提取器,以提取样本不同尺度的特征,并通过注意力机制将不同尺度特征融合;使用融合的多尺度特征构建包含结点与边特征的图神经网络,并在其中加入一个元学习器(meta-learner)用于生成边的掩码,通过筛选边特征来指导图结点聚类与更新,进一步强化样本特征;通过特征贡献度和互斥损失改进类在嵌入空间表达特征的求解过程,提升模型度量学习能力。在MiniImagenet数据集上,该方法1-shot准确率为61.4%,5-shot准确率为78.6%,分别超过传统度量学习方法12.0个百分点与10.4个百分点;在Cifar-100数据集上分别提升9.7个百分点和6.0个百分点。该方法有效提升了小样本学习场景下的模型分类准确率。