计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (16): 1-17.DOI: 10.3778/j.issn.1002-8331.2203-0580
张立艺,武文红,牛恒茂,石宝,段凯博,苏晨阳
出版日期:
2022-08-15
发布日期:
2022-08-15
ZHANG Liyi, WU Wenhong, NIU Hengmao, SHI Bao, DUAN Kaibo, SU Chenyang
Online:
2022-08-15
Published:
2022-08-15
摘要: 安全帽是施工现场最常见和实用的个人防护工具,能够有效防止和减轻意外带来的头部伤害。安全帽检测是施工现场人员安全管理的主要工作,也是施工现场智能化监控技术的重要内容,随着深度学习的发展,现已成为智慧工地建设的重要部分。为了综合分析深度学习在安全帽检测中的研究现状,针对安全帽检测算法研究,归纳了常用的安全帽检测算法和基于深度学习的安全帽检测算法,具体说明了其优缺点。在此基础上,针对现有问题,系统地总结分析了安全帽检测算法的相关改进方法,并梳理了各类方法的特点、优势和局限性。最后展望了基于深度学习的安全帽检测算法的未来发展方向。
张立艺, 武文红, 牛恒茂, 石宝, 段凯博, 苏晨阳. 深度学习中的安全帽检测算法应用研究综述[J]. 计算机工程与应用, 2022, 58(16): 1-17.
ZHANG Liyi, WU Wenhong, NIU Hengmao, SHI Bao, DUAN Kaibo, SU Chenyang. Summary of Application Research on Helmet Detection Algorithm Based on Deep Learning[J]. Computer Engineering and Applications, 2022, 58(16): 1-17.
[1] VOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001. [2] CAO X,WU C,YAN P,et al.Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos[C]//18th IEEE International Conference on Image Processing,2011:2421-2424. [3] WANG X,HAN T X,YAN S.An HOG-LBP human detector with partial occlusion handling[C]//IEEE 12th International Conference on Computer Vision,2009:32-39. [4] WU S,NAGAHASHI H.Parameterized AdaBoost:introducing a parameter to speed up the training of real AdaBoost[J].IEEE Signal Processing Letters,2014,21(6):687-691. [5] KAZEMI F M,SAMADI S,POORREZA H R,et al.Vehicle recognition using curvelet transform and SVM[C]//4th International Conference on Information Technology,2007:516-521. [6] DAR-SHYANG LEE.Effective Gaussian mixture learning for video background subtraction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):827-832. [7] MERLIN P M,FARBER D J.A parallel mechanism for detecting curves in pictures[J].IEEE Transactions on Computers,1975,24(1):96-98. [8] FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645. [9] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [10] FANG Q,LI H,LUO X,et al.Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J].Automation in Construction,2018,85(1):1-9. [11] 邓开发,邹振宇.基于深度学习的安全帽佩戴检测实现与分析[J].计算机时代,2020(7):12-15. DENG K F,ZOU Z Y.Realization and analysis of helmet wearing detection based on deep learning[J].Computer Era,2020(7):12-15. [12] ZHU X,XIONG Y,DAI J,et al.Deep feature flow for video recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4141-4150. [13] CAI Z W,VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018:6154-6162. [14] REDMON J,DIVVALA S,GIRSHICK R,at al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [15] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525. [16] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018. [17] 林俊,党伟超,潘理虎,等.基于YOLO的安全帽检测方法[J].计算机系统应用,2019,28(9):174-179. LIN J,DANG W C,PAN L H,et al.Safety helmet detection based on YOLO[J].Computer Systems & Applications,2019,28(9):174-179. [18] BOCHKOVSKIY A,WANG CY,LIAO H Y.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [19] 朱夏晗潇.基于YOLO v4的校园环境安全帽检测系统的研究[J].网络安全技术与应用,2021(10):40-41. ZHU X H X.Research on safety helmet detection system in campus environment based on YOLO v4[J].Network Security Technology & Application,2021(10):40-41. [20] YI Z,WU G,PAN X,et al.Research on helmet wearing detection in multiple scenarios based on YOLOv5[C]//2021 33rd Chinese Control and Decision Conference,2021:769-773. [21] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//14th European Conference on Computer Vision.Cham:Springer,2016:21-37. [22] LIN T,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision,2017:2999-3007. [23] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [24] 王雨生,顾玉宛,封晓晨,等.基于姿态估计的安全帽佩戴检测方法研究[J].计算机应用研究,2021,38(3):937-940. WANG Y S,GU Y W,FENG X C,et al.Research on detection method of helmet wearing based on attitude estimation[J].Application Research of Computers,2021,38(3):937-940. [25] DUAN K,BAI S,XIE L,et al.CenterNet:keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision,2019:6568-6577. [26] LAW H,DENG J.CornerNet:detecting objects as paired keypoints[J].International Journal of Computer Vision,2020,128(3):642-656. [27] TAN M,PANG R,LE Q V.EfficientDet:scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10778-10787. [28] 梅国新,姚庆华,陈瑶,等.一种边缘环境下基于EfficientDet的施工人员安全帽检测方法[J].数字通信世界,2020(9):77-78. MEI G X,YAO Q H,CHEN Y,et al.A safety helmet detection method for constructors based on EfficientDet in edge environment[J].Digital Communication World,2020(9):77-78. [29] 张明媛,曹志颖,赵雪峰,等.基于深度学习的建筑工人安全帽佩戴识别研究[J].安全与环境学报,2019,19(2):535-541. ZHANG M Y,CAO Z Y,ZHAO X F,et al.On the identification of the safety helmet wearing manners for the construction company workers based on the deep learning theory[J].Journal of Safety and Environment,2019,19(2):535-541. [30] 张博,宋元斌,熊若鑫,等.融合人体关节点的安全帽佩戴检测[J].中国安全科学学报,2020,30(2):177-182. ZHANG B,SONG Y B,XIONG R X,et al.Helmet-wearing detection considering human joint[J].China Safety Science Journal,2020,30(2):177-182. [31] ZHANG W,YANG C F,JIANG F,et al.Safety helmet wearing detection based on image processing and deep learning[C]//2020 International Conference on Communications,Information System and Computer Engineering,2020:343-347. [32] 梁思成,徐志明,宋毅.YoloV3算法在安全帽检测中的应用[J].智能计算机与应用,2020,10(9):1-5. LIANG SC,XU ZM,SONG Y.YoloV3 application in safety helmet detection[J].Intelligent Computer and Applications,2020,10(9):1-5. [33] 张占康.YOLOV3算法的安全帽检测[J].电子世界,2021(16):37-38. ZHANG Z K.Helmet detection based on YOLOV3 algorithm[J].Electronics World,2021(16):37-38. [34] 石永恒,杨超宇.基于深度学习的矿井下作业人员安全帽佩戴检测[J].绥化学院学报,2021,41(9):148-152. SHI Y H,YANG C Y.Detection of wearing safety helmets for underground coal mine workers based on deep learning[J].Journal of Suihua University,2021,41(9):148-152. [35] BHADESHIYA R N,BRAHMBHATT K N,PITRODA J R.Hard-hat detection using YOLOv4[C]//2021 2nd International Conference on Electronics and Sustainable Communication Systems,2021:1114-1120. [36] LIU Y,JIANG W.Detection of wearing safety helmet for workers based on YOLOv4[C]//2021 International Conference on Computer Engineering and Artificial Intelligence,2021:83-87. [37] 王雨生,顾玉宛,庄丽华,等.复杂姿态下的安全帽佩戴检测方法研究[J].计算机工程与应用,2022,58(1):190-196. WANG Y S,GU Y W,ZHUANG L H,et al.Research on detection method of helmet wearing in complex posture[J].Computer Engineering and Applications,2022,58(1):190-196. [38] GALLO G,DI RIENZO F,DUCANGE P,et al.A smart system for personal protective equipment detection in industrial environments based on deep learning[C]//2021 IEEE International Conference on Smart Computing,2021:222-227. [39] ZHOU F,ZHAO H,NIE Z.Safety helmet detection based on YOLOv5[C]//2021 IEEE International Conference on Power Electronics,Computer Applications,2021:6-11. [40] 樊钰.基于深度学习的安全帽检测系统设计与实现[D].呼和浩特:内蒙古大学,2019. FAN Y.Design and implementation of detection system of wearing helmets based on deep learning[D].Hohhot:Inner Mongolia University,2019. [41] BAY H,TUYTELAARS T,VAN G L.SURF:speeded up robust features[C]//9th European Conference on Computer Vision.Berlin:Springer,2006:404-417. [42] 徐守坤,王雅如,顾玉宛,等.基于改进Faster RCNN的安全帽佩戴检测研究[J].计算机应用研究,2020,37(3):901-905. XU S K,WANG Y R,GU Y W,et al.Safety helmet wearing detection study based on improved Faster RCNN[J].Application Research of Computers,2020,37(3):901-905. [43] SULAIMAN S N,ISA N A M.Adaptive fuzzy-k-means clustering algorithm for image segmentation[J].IEEE Transactions on Consumer Electronics,2010,56(4):2661-2668. [44] 郑晓,王淑琴,张文聪,等.基于深度学习的安全帽监管系统[J].计算机系统应用,2021,30(11):118-126. ZHENG X,WANG S Q,ZHANG W C,et al.Safety helmet supervision system based on deep learning[J].Computer Systems & Applications,2021,30(11):118-126. [45] 孙世丹,郑佳春,赵世佳,等.基于YOLO改进算法的安全帽和口罩佩戴自动同时检测[J].集美大学学报(自然科学版),2021,26(4):379-384. SUN S D,ZHENG J C,ZHAO S J,et al.Automatic simultaneous detection of helmet and mask wearing based on improved YOLO algorithm[J].Journal of Jimei University(Natural Science),2021,26(4):379-384. [46] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [47] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [48] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:770-778. [49] 周展博.基于深度学习的安全帽检测算法研究[D].广州:华南农业大学,2019. ZHOU Z B.Research on helmet detection algorithm based on deep learning[D].Guangzhou:South China Agricultural University,2019. [50] HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [51] HUANG G,LIU Z,et al.Densely connected convolutional networks[C]//30th IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,Jul 21-26,2017.Piscataway:IEEE,2017:2261-2269. [52] 朱晓春,王欣,马国力,等.改进YOLOv3算法的安全帽佩戴检测[J].南京工程学院学报(自然科学版),2020,18(4):23-26. ZHU X C,WANG X,MA G L,et al.Safety helmet wearing detection for improved YOLOv3 algorithm[J].Journal of Nanjing Institute of Technology(Natural Science Edition),2020,18(4):23-26. [53] 蒋润熙,阿里甫·库尔班,耿丽婷.面向轻量化网络的安全帽检测算法[J].计算机工程与应用,2021,57(20):263-270. JIANG R X,KURBAN A,GENG L T.Safety helmet detection algorithm for lightweight network[J].Computer Engineering and Applications,2021,57(20):263-270. [54] 张丽.基于视频监控的安全帽佩戴检测方法研究与系统实现[D].西安:长安大学,2020. ZHANG L.Research and implementation of the detection system of safety helmet wearing based on video surveillance[D].Xi’an:Chang’an University,2020. [55] 吴冬梅,王慧,李佳.基于改进Faster RCNN的安全帽检测及身份识别[J].信息技术与信息化,2020(1):17-20. WU D M,WANG H,LI J.Safety helmet detection and identification based on improved Faster RCNN[J].Information Technology and Informatization,2020(1):17-20. [56] JIN M,WU H,ZHANG J,et al.Video streaming helmet detection algorithm based on feature map fusion and Faster RCNN[C]//2021 International Conference on Electronic Information Engineering and Computer Science,2021:470-474. [57] 何超.基于改进YOLOv3的安全帽检测系统研究[D].武汉:华中科技大学,2019. HE C.Research on safety helmet detection system based on improved YOLOv3[D].Wuhan:Huazhong University of Science and Technology,2019. [58] 肖体刚,蔡乐才,高祥,等.改进YOLOv3的安全帽佩戴检测方法[J].计算机工程与应用,2021,57(12):216-223. XIAO T G,CAI L C,GAO X,et al.Improved YOLOv3 helmet wearing detection method[J].Computer Engineering and Applications,2021,57(12):216-223. [59] WANG F,JIANG M Q,QIAN C,et al.Residual attention network for image classification[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:3156-3164. [60] 孙国栋,李超,张航.融合自注意力机制的安全帽佩戴检测方法[J/OL].计算机工程与应用(2021-06-22)[2022-01-14].http://kns.cnki.net/kcms/detail/11.2127.TP.20210621.1819. 010.html. SUN G D,LI C,ZHANG H.Safety helmet wearing detection method fused with self-attention mechanism[J/OL].Computer Engineering and Applications(2021-06-22)[2022-01-14].http://kns.cnki.net/kcms/detail/11.2127.TP.20210621. 1819.010.html. [61] 李天宇,李栋,陈明举,等.一种高精度的卷积神经网络安全帽检测方法[J].液晶与显示,2021,36(7):1018-1026. LI T Y,LI D,CHEN M J,et al.High precision detection method of safety helmet based on convolution neural network[J].Chinese Journal of Liquid Crystals and Displays,2021,36(7):1018-1026. [62] 黄勇.基于卷积神经网络的安全帽佩戴检测研究[D].马鞍山:安徽工业大学,2020. HUANG Y.The research of helmet wearing detection based on convolutional neural network[D].Maanshan:Anhui University of Technology,2020. [63] NEUBECK A,GOOL L V.Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition,2006:850-855. [64] 金肖莹.工厂监控视频中的安全帽检测[D].武汉:华中科技大学,2019. JIN X Y.Hardhat detection for factory surveillance videos[D].Wuhan:Huazhong University of Science and Technology,2019. [65] BODLA N,SINGH B,CHELLAPPA R,et al.Soft-NMS—improving object detection with one line of code[C]//2017 IEEE International Conference on Computer Vision,2017:5562-5570. [66] TAN S,LU G,JIANG Z,et al.Improved YOLOv5 network model and application in safety helmet detection[C]//2021 IEEE International Conference on Intelligence and Safety for Robotics,2021:330-333. [67] 邱浩然.基于改进YOLOv3的安全帽检测算法研究与实现[D].成都:西南交通大学,2020. QIU H R.Research and implementation of hard hat detection algorithm based on improved YOLOv3[D].Chengdu:Southwest Jiaotong University,2020. [68] 李鹏.基于目标检测与深度估计的施工现场安全预警关键技术研究与实现[D].成都:电子科技大学,2021. LI P.Research and implementation of key technology of on-site safety early warning based on object detection and depth estimation[D].Chengdu:University of Electronic Science and Technology of China,2021. [69] 马小陆,王明明,王兵.YOLOv3在安全帽佩戴检测中的应用研究[J].河北工程大学学报(自然科学版),2020,37(4):78-86. MA X L,WANG M M,WANG B.Application of YOLOv3 in safety helmet wearing detection[J].Journal of Hebei University of Engineering(Natural Science Edition),2020,37(4):78-86. [70] 王兵,李文璟,唐欢.改进YOLO v3算法及其在安全帽检测中的应用[J].计算机工程与应用,2020,56(9):33-40. WANG B,LI W J,TANG H.Improved YOLO v3 algorithm and its application in helmet detection[J].Computer Engineering and Applications,2020,56(9):33-40. [71] 乌民雨,陈晓辉.一种基于改进YOLO v3的安全帽检测方法[J].信息通信,2020(6):12-14. WU M Y,CHEN X H.A safety helmet detection method based on improved YOLO v3[J].Information & Communication,2020(6):12-14. [72] 陈勇,黄涛,张煜昊,等.工地现场多目标危险行为检测算法的研究与实现[J].计算机应用研究,2020,37(S2):313-315. CHEN Y,HUANG T,ZHANG Y H,et al.Multi-target hazard behavior detection in construction sites[J].Application Research of Computers,2020,37(S2):313-315. [73] 许凯,邓超.基于改进YOLOv3的安全帽佩戴识别算法[J].激光与光电子学进展,2021,58(6):300-307. XU K,DENG C.Research on helmet wear identification based on improved YOLOv3[J].Laser & Optoelectronics Progress,2021,58(6):300-307. [74] 张勇,吴孔平,高凯,等.基于改进型YOLOV3安全帽检测方法的研究[J].计算机仿真,2021,38(5):413-417. ZHANG Y,WU K P,GAO K,et al.Helmet detection based on modified YOLOV3[J].Computer Simulation,2021,38(5):413-417. [75] 刘川.基于工程环境背景下安全帽佩戴检测算法研究[J].河南科技,2022,41(4):7-12. LIU C.Research on the algorithm of safety helmet wearing detection based on the background of engineering environment[J].Henan Science and Technology,2022,41(4):7-12. [76] 金雨芳,吴祥,董辉,等.基于改进YOLO v4的安全帽佩戴检测算法[J].计算机科学,2021,48(11):268-275. JIN YF,WU X,DONG H,et al.Improved YOLO v4 algorithm for safety helmet wearing detection[J].Computer Science,2021,48(11):268-275. [77] SUN S,ZHAO S,ZHENG J.Intelligent site detection based on improved YOLO algorithm[C]//2021 International Conference on Big Data Engineering and Education,2021:165-169. [78] 关雅琪,侯群.一种用于安全帽检测场景的深度学习算法[J].电子世界,2021(22):86-88. GUAN Y Q,HOU Q.A deep learning algorithm for helmet detection scenarios[J].Electronics World,2021(22):86-88. [79] 张锦,屈佩琪,孙程,等.基于改进YOLOv5的安全帽佩戴检测方法[J/OL].计算机应用[2022-04-13].http://kns.cnki.net/kcms/detail/51.1307.TP.20210908.1727.002.html. ZHANG J,QU PQ,SUN C,et al.Safety helmet wearing detection method based on improved YOLOv5[J/OL].Journal of Computer Applications[2022-04-13].http://kns.cnki.net/kcms/detail/51.1307.TP.20210908.1727.002.html. [80] 王玲敏,段军,辛立伟.引入注意力机制的YOLOv5安全帽佩戴检测方法[J/OL].计算机工程与应用[2022-04-13].http://kns.cnki.net/kcms/detail/11.2127.TP.20220301.1925. 019.html. WANG L M,DUAN J,XIN L W.YOLOv5 helmet wear detection method with the introduction of an attention mechanism[J/OL].Computer Engineering and Applictions[2022-04-13].http://kns.cnki.net/kcms/detail/11.2127.TP. 20220301.1925.019.html. [81] KAMAL R,CHEMMANAM A J,JOSE B A,et al.Construction safety surveillance using machine learning[C]//2020 International Symposium on Networks,Computers and Communications,2020:1-6. [82] 梁伟,荆朝,周治国,等.电力施工场景下安全帽穿戴状态检测算法研究[C]//第十四届全国信号和智能信息处理与应用学术会议论文集,2021:508-512.DOI:10.26914/c.cnkihy. 2021.003029. LIANG W,JING C,ZHOU Z G,et al.Research on detection algorithm of helmet wearing state in electric construction[C]//14th National Conference on Signal and Intelligent Information Processing and Application,2021:508-512. [83] 李明山,韩清鹏,张天宇,等.改进SSD的安全帽检测方法[J].计算机工程与应用,2021,57(8):192-197. LI M S,HAN Q P,ZHANG T Y,et al.Safety helmet detection method of improved SSD[J].Computer Engineering and Applications,2021,57(8):192-197. [84] 刘光品,刘云鹏,王仁芳.基于改进RetinaNet模型的室内安全帽佩戴检测研究[J].浙江万里学院学报,2020,33(6):97-103. LIU G P,LIU Y P,WANG R F.Research on indoor hard hat wear detection based on revised RetinaNet model[J].Journal of Zhejiang Wanli University,2020,33(6):97-103. [85] 罗欣宇.基于深度学习的工地安全防护检测系统[D].杭州:杭州电子科技大学,2020. LUO X Y.Construction site safety protection detection system based on deep learning[D].Hangzhou:Hangzhou Dianzi University,2020. [86] 周敏新,张方舟,龚声蓉.基于新型特征融合的安全帽佩戴检测方法[J].计算机工程与设计,2021,42(11):3181-3187. ZHOU M X,ZHANG F Z,GONG S R.Detection of non-hardhat-use based on new feature fusion[J].Computer Engineering and Design,2021,42(11):3181-3187. [87] 赵江河,王海瑞,吴蕾.FPN-CenterNet安全帽佩戴检测算法[J/OL].计算机工程与应用[2022-04-13].http://kns.cnki.net/kcms/detail/11.2127.TP.20220315.1623.002.html. ZHAO J H,WANG H R,WU L.FPN-CenterNet helmet wearing detection algorithm[J/OL].Computer Engineering and Applications[2022-04-13].http://kns.cnki.net/kcms/detail/11.2127.TP.20220315.1623.002.html. [88] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training region-based object detectors with online hard example mining[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:761-769. [89] 王慧.基于改进Faster R-CNN的安全帽检测及身份识别[D].西安:西安科技大学,2020. WANG H.Safety helmet detection and identification based on improved Faster R-CNN[D].Xi’an:Xi’an University of Science and Technology,2020. [90] 徐守坤,王雅如,顾玉宛.基于改进区域卷积神经网络的安全帽佩戴检测[J].计算机工程与设计,2020,41(5):1385-1389. XU S K,WANG Y R,GU Y W.Construction site safety helmet wearing detection based on improved region convolutional neural network[J].Computer Engineering and Design,2020,41(5):1385-1389. [91] 韩锟,李斯宇,肖友刚.施工场景下基于YOLOv3的安全帽佩戴状态检测[J].铁道科学与工程学报,2021,18(1):268-276. HAN K,LI S Y,XIAO Y G.Detection of wearing state of safety helmet based on YOLOv3 in construction scene[J].Journal of Railway Science and Engineering,2021,18(1):268-276. [92] CHENG R,HE X,ZHENG Z,et al.Multi-scale safety helmet detection based on SAS-YOLOv3-Tiny[J].Applied Sciences,2021,11(8):3652. [93] 农元君,王俊杰,徐晓东,等.面向嵌入式平台的安全帽实时检测方法[J/OL].计算机工程与应用[2022-01-14].http://kns.cnki.net/kcms/detail/11.2127.TP.20210223.1318.008.html. NONG Y J,WANG J J,XU X D,et al.Real-time hardhats detection method for embedded platform[J/OL].Computer Engineering and Applications[2022-01-14].http://kns.cnki.net/kcms/detail/11.2127.TP.20210223.1318.008.html [94] 钟鑫豪,龙永红,何震凯,等.基于改进Tiny-yolov3算法的安全帽佩戴检测[J].湖南工业大学学报,2021,35(2):46-50. ZHONG X H,LONG Y H,HE Z K,et al.Hamlet wearing detection algorithm based on an improved Tiny-yolov3[J].Journal of Hunan University of Technology,2021,35(2):46-50. [95] 曹燕,宋正伟,周楠.一种基于等级SSD的建筑工人安全帽佩戴检测方法[J].工业控制计算机,2021,34(1):55-56. CAO Y,SONG Z W,ZHOU N.Safety helmet wearing detection method for construction workers based on grade SSD[J].Industrial Control Computer,2021,34(1):55-56. [96] HUBARA I,COURBARIAUX M,SOUDRY D.Quantized neural networks:training neural networks with low precision weights and activations[J].The Journal of Machine Learning Research,2017,18(1):6869-6898. [97] HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].Computer Science,2015,14(7):38-39. [98] LI H,KADAV A,DURDANOVIC I,et al.Pruning filters for efficient convnets[J].arXiv:1608.08710,2016. [99] 方明,孙腾腾,邵桢.基于改进YOLOv2的快速安全帽佩戴情况检测[J].光学精密工程,2019,27(5):1196-1205. FANG M,SUN T T,SHAO Z.Fast helmet-wearing-condition detection based on improved YOLOv2[J].Optics and Precision Engineering,2019,27(5):1196-1205. [100] 赵红成,田秀霞,杨泽森,等.YOLO-S:一种新型轻量的安全帽佩戴检测模型[J].华东师范大学学报(自然科学版),2021(5):134-145. ZHAO H C,TIAN X X,YANG Z S,et al.YOLO-S:a new lightweight helmet wearing detection model[J].Journal of East China Normal University(Natural Science),2021(5):134-145. [101] PAN S J,YANG Q.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359. [102] KRIZHERVSKY A,SUTSKEVER I,HINTON G E.Image-Net classification with deep convolutional neural networks[C]//2012 International Conference on Neural Information Processing Systems,2012:1097-1105. [103] HAN K,ZENG X.Deep learning-based workers safety helmet wearing detection on construction sites using multi-scale features[J].IEEE Access,2022,10:718-729. [104] 徐先峰,赵万福,邹浩泉,等.基于MobileNet-SSD的安全帽佩戴检测算法[J].计算机工程,2021,47(10):298-305. XU X F,ZHAO W F,ZOU H Q,et al.Detection algorithm of safety helmet wear based on MobileNet-SSD[J].Computer Engineering,2021,47(10):298-305. [105] 赵春晖,李瑞,宿南.基于改进YOLOv3的工业安监目标检测算法[J].沈阳大学学报(自然科学版),2021,33(2):125-130. ZHAO C H,LI R,SU N.Target detection algorithm for industrial safety supervision based on YOLOv3[J].Journal of Shenyang University(Natural Science),2021,33(2):125-130. [106] GENG R,MA Y,HUANG W.An improved helmet detection method for YOLOv3 on an unbalanced dataset[C]//2021 3rd International Conference on Advances in Computer Technology,Information Science and Communication,2021:328-332. [107] 张业宝,徐晓龙.基于改进SSD的安全帽佩戴检测方法[J].电子测量技术,2020,43(19):80-84. ZHANG Y B,XU X L.Safety helmet wearing detection method based on improved SSD[J].Electronic Measurement Technology,2020,43(19):80-84. [108] ZHAO B,LAN H,NIU Z,et al.Detection and location of safety protective wear in power substation operation using wear-enhanced YOLOv3 Algorithm[J].IEEE Access,2021,9:125540-125549. [109] 屈文谦,邱志斌,廖才波,等.基于YOLOv3的电网作业人员安全帽佩戴检测[J].中国安全生产科学技术,2022,18(2):214-219. QU W Q,QIU Z B,LIAO C B,et al.Detection on safety helmet wearing of power grid operators based on YOLOv3[J].Journal of Safety Science and Technology,2022,18(2):214-219. [110] 徐传运,袁含香,李刚,等.使用场景增强的安全帽佩戴检测方法研究[J/OL].计算机工程与应用[2022-01-14].http:// kns.cnki.net/kcms/detail/11.2127.TP.20210604.1536.014.html. XU C Y,YUAN H X,LI G,et al.Research on safety helmet wearing detection method based on scene augment[J/OL].Computer Engineering and Applications[2022-01-14].http://kns.cnki.net/kcms/detail/11.2127.TP.20210604. 1536.014.html. [111] 王珩.基于YOLOv3的安全帽佩戴检测方法研究[J].自动化仪表,2021,42(2):63-67. WANG H.Research on detecting method for safety helmet wearing based on YOLOv3[J].Process Automation Instrumentation,2021,42(2):63-67. [112] 赵睿,刘辉,刘沛霖,等.基于改进YOLOv5s的安全帽检测算法[J/OL].北京航空航天大学学报[2022-04-13].DOI:10.13700/j.bh.1001-5965.2021.0595. ZHAO R,LIU H,LIU PL,et al.Research on safety helmet detection algorithm based on improved YOLOv5s[J/OL].Journal of Beijing University of Aeronautics and Astronautics[2022-04-13].DOI:10.13700/j.bh.1001-5965. 2021.0595. |
[1] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[2] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[3] | 农元君, 王俊杰, 徐晓东, 赵雪冰. 面向嵌入式平台的安全帽实时检测方法[J]. 计算机工程与应用, 2022, 58(9): 161-167. |
[4] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[5] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[6] | 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207. |
[7] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[8] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[9] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[10] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[11] | 王浩, 雷印杰, 陈浩楠. 改进YOLOV3实时交通标志检测算法[J]. 计算机工程与应用, 2022, 58(8): 243-248. |
[12] | 赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8): 289-296. |
[13] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[14] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[15] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||