计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (15): 18-36.DOI: 10.3778/j.issn.1002-8331.2203-0312
李浩然,周小平,王佳
出版日期:
2022-08-01
发布日期:
2022-08-01
LI Haoran, ZHOU Xiaoping, WANG Jia
Online:
2022-08-01
Published:
2022-08-01
摘要: 受成像载体、成像光谱和成像条件等的影响,跨域图像在不同领域的应用日益增多,跨域图像检索已成为了许多领域研究的热点和前言。然而图像的跨域检索面临着图像视觉偏差的问题,通过传统同域图像检索的方法无法有效地得到结果。通过文献调研,系统梳理了近年来跨域图像检索领域的代表性方法。对跨域图像检索任务作出了简要说明并指出了关键问题;根据图像域的不同转换阶段,将跨域图像检索方法分为两类:基于特征空间迁移和基于图像域迁移的跨域图像检索方法,并对两类方法进行了系统总结和分析;整理了跨域图像检索在不同领域的数据集,对比了各类方法的性能;总结了现有跨域检索方法并对未来的研究方向进行了展望。
李浩然, 周小平, 王佳. 跨域图像检索综述[J]. 计算机工程与应用, 2022, 58(15): 18-36.
LI Haoran, ZHOU Xiaoping, WANG Jia. Review of Cross-Domain Image Retrieval[J]. Computer Engineering and Applications, 2022, 58(15): 18-36.
[1] HAMEED I M,ABDULHUSSAIN S H,MAHMMOD B M.Content-based image retrieval:a review of recent trends[J].Cogent Engineering,2021,8(1):1927469. [2] 牛亚茜,冀小平.基于卷积神经网络的图像检索算法研究[J].计算机工程与应用,2019,55(18):201-206. NIU Y X,JI X P.Image retrieval algorithm based on convolutional neural network[J].Computer Engineering and Applications,2019,55(18):201-206. [3] IRTAZA A,JAFFAR M A.Categorical image retrieval through genetically optimized support vector machines(GOSVM) and hybrid texture features[J].Signal,Image and Video Processing,2015,9(7):1503-1519. [4] CHANG C C,LIN C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology(TIST),2011,2(3):1-27. [5] FADAEI S,AMIRFATTAHI R,AHMADZADEH M R.Local derivative radial patterns:a new texture descriptor for content-based image retrieval[J].Signal Processing,2017,137:274-286. [6] 阿卜杜如苏力·奥斯曼,吐尔洪江·阿布都克力木,马丽亚木·阿布来孜.综合颜色特征与形状特征的图像检索算法[J].计算机工程与应用,2013,49(7):167-170. ABDURUSUL O,MARYAMGUL A,TURGHUNJAN A.Image retrieval approach combining color feature and shape feature[J].Computer Engineering and Applications,2013,49(7):167-170. [7] KHAN R,BARAT C,MUSELET D,et al.Spatial orientations of visual word pairs to improve bag-of-visual-words model[C]//Proceedings of the British Machine Vision Conference.[S.l.]:BMVA Press,2012. [8] 胡耿,蔡延光.新冠肺炎CT影像的DNN对抗攻击研究[J].计算机工程与应用,2022,58(1):152-157. HU G,CAI Y G.Research of DNN adversarial attack on COVID-19 CT image dataset[J].Computer Engineering and Applications,2022,58(1):152-157. [9] LIU Z,LUO P,QIU S,et al.Deepfashion:powering robust clothes recognition and retrieval with rich annotations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1096-1104. [10] 王志伟,普园媛,王鑫,等.基于多特征融合的多尺度服装图像精准化检索[J].计算机学报,2020,43(4):740-754. WANG Z W,PU Y Y,WANG X,et al.Accurate retrieval of multi-scale clothing images based on multi-feature fusion[J].Chinese Journal of Computers,2020,43(4):740-754. [11] JI X,WANG W,ZHANG M,et al.Cross-domain image retrieval with attention modeling[C]//Proceedings of the 25th ACM International Conference on Multimedia,2017:1654-1662. [12] 刘玉杰,王文亚,李宗民,等.结合注意力机制的跨域服装检索[J].计算机辅助设计与图形学学报,2020,32(6):894-902. LIU Y J,WANG W Y,LI Z M,et al.Cross-domain clothing retrieval with attention model[J].Journal of Computer-Aided Design & Computer Graphics,2020,32(6):894-902. [13] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [14] FAN D,WANG L,CHENG S,et al.Dual branch attention network for person re-identification[J].Sensors,2021,21(17):5839. [15] YU Q,SONG J,SONG Y Z,et al.Fine-grained instance-level sketch-based image retrieval[J].International Journal of Computer Vision,2021,129(2):484-500. [16] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [17] CHEN Y,ZHANG Z,WANG Y,et al.AE-Net:fine-grained sketch-based image retrieval via attention-enhanced network[J].Pattern Recognition,2022,122:108291. [18] 葛芸,马琳,叶发茂,等.基于多尺度池化和范数注意力机制的遥感图像检索[J].电子与信息学报,2021,44(2):543-551. GE Y,MA L,YE F M,et al.Remote sensing image retrieval based on multi-scale pooling and norm attention mechanism[J].Journal of Electronics & Information Technology,2021,44(2):543-551. [19] OU D,TAN K,LAI J,et al.Semi-supervised DNN regression on airborne hyperspectral imagery for improved spatial soil properties prediction[J].Geoderma,2021,385:114875. [20] LEI J,ZHENG K,ZHANG H,et al.Sketch based image retrieval via image-aided cross domain learning[C]//2017 IEEE International Conference on Image Processing(ICIP),2017:3685-3689. [21] HA I,KIM H,PARK S,et al.Image retrieval using BIM and features from pretrained VGG network for indoor localization[J].Building and Environment,2018,140:23-31. [22] KIM D,SAITO K,OH T H,et al.CDS:cross-domain self-supervised pre-training[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:9123-9132. [23] CHOPRA S,HADSELL R,LECUN Y.Learning a similarity metric discriminatively,with application to face verification[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05),2005:539-546. [24] HOFFER E,AILON N.Deep metric learning using triplet network[C]//International Workshop on Similarity-Based Pattern Recognition.Cham:Springer,2015:84-92. [25] CHEN W,CHEN X,ZHANG J,et al.Beyond triplet loss:a deep quadruplet network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:403-412. [26] SHI Y,YU X,CAMPBELL D,et al.Where am I looking at?joint location and orientation estimation by cross-view matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:4064-4072. [27] PARK H,LEE S,LEE J,et al.Learning by aligning:visible-infrared person re-identification using cross-modal correspondences[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:12046-12055. [28] MA J,SHI D,TANG X,et al.Dual modality collaborative learning for cross-source remote sensing retrieval[J].Remote Sensing,2022,14(6):1319. [29] MIAO Y,HUANG N,MA X,et al.On exploring pose estimation as an auxiliary learning task for visible-infrared person re-identification[J].arXiv:2201.03859,2022. [30] OSOKIN D.Global context for convolutional pose machines[J].arXiv:1906.04104,2019. [31] LI S,TU Z,CHEN Y,et al.Multi-scale attention encoder for street-to-aerial image geo-localization[J].CAAI Transactions on Intelligence Technology,2022:1-11. [32] YU Q,LIU F,SONG Y Z,et al.Sketch me that shoe[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:799-807. [33] LIN H,FU Y,LU P,et al.Tc-net for isbir:triplet classification network for instance-level sketch based image retrieval[C]//Proceedings of the 27th ACM International Conference on Multimedia,2019:1676-1684. [34] 李奇真,周圆,李绰,等.混合跨域神经网络的草图检索算法[J].哈尔滨工业大学学报,2022,54(5):64-73. LI Q Z,ZHOU Y,LI C,et al.Hybrid cross-domain joint network for sketch-based image retrieval[J].Journal of Harbin Institute of Technology,2022,54(5):64-73. [35] LEORDEANU M,SUKTHANKAR R,SMINCHISESCU C.Efficient closed-form solution to generalized boundary detection[C]//European Conference on Computer Vision.Berlin,Heidelberg:Springer,2012:516-529. [36] SONG J,SONG Y Z,XIANG T,et al.Fine-grained image retrieval:the text/sketch input dilemma[C]//The 28th British Machine Vision Conference,2017. [37] FUENTES A,SAAVEDRA J M.Sketch-QNet:a quadruplet ConvNet for color sketch-based image retrieval[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:2134-2141. [38] GONG Y,KE Q,ISARD M,et al.A multi-view embedding space for modeling internet images,tags,and their semantics[J].International Journal of Computer Vision,2014,106(2):210-233. [39] CANNY J.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986(6):679-698. [40] DOS SANTOS M M,GIACOMO G,DREWS P,et al.Cross-view and cross-domain underwater localization based on optical aerial and acoustic underwater images[J].arXiv:2202.07817,2022. [41] XING E,JORDAN M,RUSSELL S J,et al.Distance metric learning with application to clustering with side-information[C]//Proceedings of the 15th International Conference on Neural Information Processing Systems,2002:521-528. [42] HADSELL R,CHOPRA S,LECUN Y.Dimensionality reduction by learning an invariant mapping[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’06),2006:1735-1742. [43] SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:815-823. [44] REALE C,NASRABADI N M,KWON H,et al.Seeing the forest from the trees:a holistic approach to near-infrared heterogeneous face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2016:54-62. [45] WANG X,SUN Z,ZHANG W,et al.Matching user photos to online products with robust deep features[C]//Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval,2016:7-14. [46] CHENG Y,WANG H.A modified contrastive loss method for face recognition[J].Pattern Recognition Letters,2019,125:785-790. [47] BUI T,RIBEIRO L,PONTI M,et al.Compact descriptors for sketch-based image retrieval using a triplet loss convolutional neural network[J].Computer Vision and Image Understanding,2017,164:27-37. [48] XIONG W,XIONG Z,CUI Y,et al.A discriminative distillation network for cross-source remote sensing image retrieval[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:1234-1247. [49] WEN Y,ZHANG K,LI Z,et al.A discriminative feature learning approach for deep face recognition[C]//European Conference on Computer Vision.Cham:Springer,2016:499-515. [50] ARANDJELOVIC R,GRONAT P,TORII A,et al.NetVLAD:CNN architecture for weakly supervised place recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:5297-5307. [51] IBRAHIMI S,VAN NOORD N,GERADTS Z,et al.Deep metric learning for cross-domain fashion instance retrieval[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019. [52] SOHN K.Improved deep metric learning with multi-class n-pair loss objective[C]//Advances in Neural Information Processing Systems,2016:1857-1865. [53] OH SONG H,XIANG Y,JEGELKA S,et al.Deep metric learning via lifted structured feature embedding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:4004-4012. [54] WANG J,ZHOU F,WEN S,et al.Deep metric learning with angular loss[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2593-2601. [55] HERMANS A,BEYER L,LEIBE B.In defense of the triplet loss for person re-identification[J].arXiv:1703. 07737,2017. [56] FARAKI M,YU X,TSAI Y H,et al.Cross-domain similarity learning for face recognition in unseen domains[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:15292-15301. [57] DENG J,GUO J,XUE N,et al.Arcface:additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:4690-4699. [58] JIAO J,LIU W,MO Y,et al.Dyn-arcFace:dynamic additive angular margin loss for deep face recognition[J].Multimedia Tools and Applications,2021,80:25741-25756. [59] WU Q,DAI P,CHEN J,et al.Discover cross-modality nuances for visible-infrared person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:4330-4339. [60] CHEEMA U,AHMAD M,HAN D,et al.Heterogeneous visible-thermal and visible-infrared face recognition using cross-modality discriminator network and unit-class loss[J].arXiv:2111.14339,2021. [61] PAUL S,DUTTA T,BISWAS S.Universal cross-domain retrieval:generalizing across classes and domains[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:12056-12064. [62] GAO G,SHAO H,WU F,et al.Leaning compact and representative features for cross-modality person re-identification[J].World Wide Web,2022:1-18. [63] KALANTIDIS Y,KENNEDY L,LI L J.Getting the look:clothing recognition and segmentation for automatic product suggestions in everyday photos[C]//Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval,2013:105-112. [64] ANDONI A,INDYK P.Near-optimal Hashing algorithms for approximate nearest neighbor in high dimensions[C]//2006 47th Annual IEEE Symposium on Foundations of Computer Science(FOCS’06),2006:459-468. [65] LIU L,SHEN F,SHEN Y,et al.Deep sketch Hashing:fast free-hand sketch-based image retrieval[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2862-2871. [66] SHEN Y,LIU L,SHEN F,et al.Zero-shot sketch-image Hashing[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3598-3607. [67] HU G,HUA Y,YUAN Y,et al.Attribute-enhanced face recognition with neural tensor fusion networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:3744-3753. [68] XIONG W,XIONG Z,ZHANG Y,et al.A deep cross-modality Hashing network for SAR and optical remote sensing images retrieval[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,13:5284-5296. [69] DU X,ZHONG D,SHAO H.Cross-domain palmprint recognition via regularized adversarial domain adaptive Hashing[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,31(6):2372-2385. [70] WU T,LENG L,KHAN M K,et al.Palmprint-palmvein fusion recognition based on deep Hashing network[J].IEEE Access,2021,9:135816-135827. [71] JADERBERG M,SIMONYAN K,ZISSERMAN A.Spatial transformer networks[C]//Advances in Neural Information Processing Systems,2015. [72] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [73] PANG K,SONG Y Z,XIANG T,et al.Cross-domain generative learning for fine-grained sketch-based image retrieval[C]//The 28th British Machine Vision Conference,2017:1-12. [74] KAMPELMUHLER M,PINZ A.Synthesizing human-like sketches from natural images using a conditional convolutional decoder[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:3203-3211. [75] SAJID M,ALI N,DAR S H,et al.Short search space and synthesized-reference re-ranking for face image retrieval[J].Applied Soft Computing,2021,99:106871. [76] LIU F,GAO C,SUN Y,et al.Infrared and visible cross-modal image retrieval through shared features[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(11):4485-4496. [77] LEI H,CHEN S,WANG M,et al.A new algorithm for sketch-based fashion image retrieval based on cross-domain transformation[J].Wireless Communications and Mobile Computing,2021. [78] SAIN A,BHUNIA A K,YANG Y,et al.Stylemeup:Towards style-agnostic sketch-based image retrieval[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8504-8513. [79] KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [80] ZHAO P,ZHANG F,WEI J,et al.SADG:self-aligned dual NIR-VIS generation for heterogeneous face recognition[J].Applied Sciences,2021,11(3):987. [81] REGMI K.Exploring relationships between ground and aerial views by synthesis and matching[J].Electronic Theses and Dissertations,2021:2020-747. [82] LIN J,SONG X,GAN T,et al.PaintNet:a shape-constrained generative framework for generating clothing from fashion model[J].Multimedia Tools and Applications,2021,80(11):17183-17203. [83] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014. [84] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232. [85] XIONG W,LV Y,ZHANG X,et al.Learning to translate for cross-source remote sensing image retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(7):4860-4874. [86] 种衍文,章郴,冯文强,等.基于多粒度生成对齐网络的行人重识别[J].华中科技大学学报(自然科学版),2022,50(4):64-70. CHONG Y W,ZHANG C,FENG W Q,et al.Person reidentification based on multi-level and generated alignment network[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(4):64-70. [87] CHEN J,LI S,LIU D,et al.Indoor camera pose estimation via style-transfer 3D models[J].Computer-Aided Civil and Infrastructure Engineering,2022,37(3):335-353. [88] ZHANG J,SHEN F,LIU L,et al.Generative domain-migration Hashing for sketch-to-image retrieval[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:297-314. [89] BAI C,CHEN J,MA Q,et al.Cross-domain representation learning by domain-migration generative adversarial network for sketch based image retrieval[J].Journal of Visual Communication and Image Representation,2020,71:102835. [90] TOKER A,ZHOU Q,MAXIMOV M,et al.Coming down to earth:satellite-to-street view synthesis for geo-localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:6488-6497. [91] ZHANG X,SUN Y,LIU L.An improved generative adversarial network for translating clothes from the human body to tiled image[J].Neural Computing and Applications,2021,33(14):8445-8457. [92] ZHONG Z,ZHENG L,ZHENG Z,et al.Camera style adaptation for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5157-5166. [93] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826. [94] LIU C,CHANG X,SHEN Y D.Unity style transfer for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:6887-6896. [95] ZHOU S,WANG Y,ZHANG F,et al.Cross-view similarity exploration for unsupervised cross-domain person re-identification[J].Neural Computing and Applications,2021,33(9):4001-4011. [96] CHOI Y,CHOI M,KIM M,et al.Stargan:unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8789-8797. [97] HADI KIAPOUR M,HAN X,LAZEBNIK S,et al.Where to buy it:matching street clothing photos in online shops[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:3343-3351. [98] GE Y,ZHANG R,WANG X,et al.Deepfashion2:a versatile benchmark for detection,pose estimation,segmentation and re-identification of clothing images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5337-5345. [99] EITZ M,HAYS J,ALEXA M.How do humans sketch objects?[J].ACM Transactions on Graphics(TOG),2012,31(4):1-10. [100] HU R,COLLOMOSSE J.A performance evaluation of gradient field hog descriptor for sketch based image retrieval[J].Computer Vision and Image Understanding,2013,117(7):790-806. [101] SANGKLOY P,BURNELL N,HAM C,et al.The sketchy database:learning to retrieve badly drawn bunnies[J].ACM Transactions on Graphics(TOG),2016,35(4):1-12. [102] LI S Z,LEI Z,AO M.The HFB face database for heterogeneous face biometrics research[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,2009:1-8. [103] LI S,YI D,LEI Z,et al.The casia nir-vis 2.0 face database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2013:348-353. [104] WU A,ZHENG W S,YU H X,et al.RGB-infrared cross-modality person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5380-5389. [105] HUANG G B,MATTAR M,BERG T,et al.Labeled faces in the wild:a database forstudying face recognition in unconstrained environments[C]//Workshop on faces in “Real-Life” Images:Detection,Alignment,and Recognition,2008. [106] CHEN B C,CHEN C S,HSU W H.Cross-age reference coding for age-invariant face recognition and retrieval[C]//European Conference on Computer Vision.Cham:Springer,2014:768-783. [107] YANG Y,NEWSAM S.Geographic image retrieval using local invariant features[J].IEEE Transactions on Geoscience and Remote Sensing,2012,51(2):818-832. [108] LI Y,ZHANG Y,HUANG X,et al.Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(11):6521-6536. [109] TORII A,SIVIC J,PAJDLA T,et al.Visual place recognition with repetitive structures[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2013:883-890. [110] TORII A,ARANDJELOVIC R,SIVIC J,et al.24/7 place recognition by view synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1808-1817. [111] WORKMAN S,SOUVENIR R,JACOBS N.Wide-area image geolocalization with aerial reference imagery[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:3961-3969. [112] LIU L,LI H.Lending orientation to neural networks for cross-view geo-localization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5624-5633. [113] WAH C,BRANSON S,WELINDER P,et al.The caltech-ucsd birds-200-2011 dataset[R].Computation & Neural Systems Technical Report,2011. [114] SILVEIRA L,GUTH F,DREWS-JR P,et al.An open-source bio-inspired solution to underwater SLAM[J].IFAC-PapersOnLine,2015,48(2):212-217. [115] ZHANG D,GUO Z,LU G,et al.An online system of multispectral palmprint verification[J].IEEE Transactions on Instrumentation and Measurement,2009,59(2):480-490. [116] ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1116-1124. [117] RISTANI E,SOLERA F,ZOU R,et al.Performance measures and a data set for multi-target,multi-camera tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:17-35. [118] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [119] YU Q,YANG Y,SONG Y Z,et al.Sketch-a-net that beats humans[J].arXiv:1501.07873,2015. [120] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [121] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [122] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [123] CHATFIELD K,SIMONYAN K,VEDALDI A,et al.Return of the devil in the details:delving deep into convolutional nets[J].arXiv:1405.3531,2014. |
[1] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[2] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[3] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[4] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[5] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[6] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[7] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[8] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[9] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[10] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[11] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[12] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[13] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[14] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[15] | 张昊, 张小雨, 张振友, 李伟. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||