计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (14): 16-26.DOI: 10.3778/j.issn.1002-8331.2203-0506
朱弥雪,刘志强,张旭,李文静,苏佳新
出版日期:
2022-07-15
发布日期:
2022-07-15
ZHU Mixue, LIU Zhiqiang, ZHANG Xu, LI Wenjing, SU Jiaxin
Online:
2022-07-15
Published:
2022-07-15
摘要: 火灾早期时,烟雾相较于火焰特征更为明显,因此早期的烟雾检测对于预防火灾具有重大意义。针对森林、草原火灾早期的烟雾检测,烟雾探测器成本高、检测效果较差且不能提供烟雾大小、方向、位置等信息。随着计算机视觉的发展,基于视频的烟雾检测方法以低成本、覆盖面广、信息获取较全面等优势逐渐成为研究热点。但由于森林、草原背景复杂、烟雾本身易变化,因此视频烟雾检测算法仍面临着巨大的挑战。为研究深度学习的视频烟雾检测中的应用效果,分析了烟雾检测存在的难点问题及传统视频烟雾检测算法的不足,介绍了当前深度学习中各类目标检测算法在烟雾检测中的应用,对比了这些烟雾检测算法,总结了其优点和不足,重点分析了各种烟雾检测难点问题的解决方法,并提出烟雾检测的下一步研究方向。
朱弥雪, 刘志强, 张旭, 李文静, 苏佳新. 林火视频烟雾检测算法综述[J]. 计算机工程与应用, 2022, 58(14): 16-26.
ZHU Mixue, LIU Zhiqiang, ZHANG Xu, LI Wenjing, SU Jiaxin. Review of Research on Video-Based Smoke Detection Algorithms[J]. Computer Engineering and Applications, 2022, 58(14): 16-26.
[1] 王晓薇,张笑语,孙可,等.基于改进深度信念网络的校园烟雾检测[J].沈阳师范大学学报(自然科学版),2020,38(4):345-350. WANG X W,ZHANG X Y,SUN K,et al.Modified deep belief network for campus smoke detection[J].Journal of Shenyang Normal University(Natural Science Edition),2020,38(4):345-350. [2] 郝建红,范宗皓,王晖.基于ELU卷积神经网络的视频烟雾检测[J].燕山大学学报,2020,44(4):397-402. HAO J H,FAN Z H,WANG H.ELU convolution neural network algorithm for video smoke recognition[J].Journal of Yanshan University,2020,44(4):397-402. [3] GU J,WANG Z,KUEN J,et al.Recent advances in convolutional neural networks[J].arXiv:1512.07108,2015. [4] 刘长春,刘鹏举,季烨云.基于视频区域动态特征的林火烟雾检测技术研究[J].北京林业大学学报,2021,43(1):10-19. LIU C C,LIU P J,JI Y Y.Research on forest fire smoke detection technology based on video region dynamic features[J].Journal of Beijing Forestry University,2021,43(1):10-19. [5] 王韦刚,王炳蔚,张云伟.TDFF:一种强鲁棒性的烟雾图像检测算法[J].激光与光电子学进展,2021,58(4):273-280. WANG W G,WANG B W,ZHANG Y W.TDFF:strong robust algorithm for smoke image detection[J].Laser & Optoelectronics Progress,2021,58(4):273-280. [6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [7] SIMONYAN K,ZISSERMAN A.Very deep convoluteonal networks for large-scale image recognition[EB/OL].(2014-09-04)[2021-09-13].http://arxiv.org/abs/1409.1556. [8] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 27-30,2016,Las Vegas,NV,USA.New York:IEEE,2016:770-778. [9] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [10] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington:IEEE Computer Society Press,2015:1440-1448. [11] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [12] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [13] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016.Washington:IEEE Computer Society,2016:779-788. [14] REDMON J,FARHADI A.YOLO9000:better,faster stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,Jul 21-26,2017.Washington:IEEE Computer Society,2017:6517-6525. [15] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [16] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [17] WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2020:1571-1580. [18] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018. [19] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision,Amsterdam,October 11-14,2016.Berlin,Heidelberg:Springer,2016:21-37. [20] FU C Y,LIU W,RANG A,et al.DSSD:deconvolutional single shot detector[J].arXiv:1701.06659,2017. [21] JENOGN J,PARK H,KWAK N.Enhancement of SSD by concatenating feature maps for object detection[J].arXiv:1705.09587,2017. [22] LI Z X,ZHOU F Q.FSSD:feature fusion single shot multibox detector[J].arXiv:1712.00960,2017. [23] 冯路佳,王慧琴,王可,等.基于目标区域的卷积神经网络火灾烟雾识别[J].激光与光电子学进展,2020,57(16):83-91. FENG L J,WANG H Q,WANG K,et al.Convolutional neural network fire smoke detection based on target region[J].Laser & Optoelectronics Progress,2020,57(16):83-91. [24] 高联欣,魏维,胡泳植,等.基于运动筛选和3D卷积的视频早期烟雾检测[J].计算机工程与应用,2020,56(17):266-272. GAO L X,WEI W,HU Y Z,et al.Video early smoke detection based on motion extraction and 3D convolutional neural network[J].Computer Engineering and Applications,2020,56(17):266-272. [25] LEE S,LEE Y.Real-time smoke detection research with false positive reduction using spatial and temporal features based on Faster R-CNN[J].Journal of IKEEE,2020,24(4):1148-1155. [26] WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [27] WANG G,LI J,ZHENG Y,et al.Forest smoke detection based on deep learning and background modeling[C]//IEEE International Conference on Power,Intelligent Computing and Systems(ICPICS),2020:112-116. [28] 杜立召,徐岩,张为.一种双网融合的分阶段烟雾检测算法[J].西安电子科技大学学报,2020,47(4):141-148. DU L Z,XU Y,ZHANG W.Phased smoke detection algorithm using dual network fusion[J].Journal of Xidian University,2020,47(4):141-148. [29] YIN H,WEI Y,LIU H,et al.Deep convolutional generative adversarial network and convolutional neural network for smoke detection[J].Complexity,2020,8:1-12. [30] 李鹏,张炎.基于高斯混合模型和卷积神经网络的视频烟雾检测[J].激光与光电子学进展,2019,56(21):140-146. LI P,ZHANG Y.Video smoke detection based on Gaussian mixture model and convolutional neural network[J].Laser & Optoelectronics Progress,2019,56(21):140-146. [31] 程淑红,马继勇,张仕军,等.改进的混合高斯与YOLOv2融合烟雾检测算法[J].计量学报,2019,40(5):798-803. CHENG S H,MA J Y,ZHANG S J,et al.Smoke detection algorithm combined with improved Gaussian mixture and YOLOv2[J].Acta Metrologica Sinica,2019,40(5):798-803. [32] 李澎林,章军伟,李伟.基于光流改进与YOLOv3的烟雾检测方法[J].浙江工业大学学报,2021,49(1):9-15. LI P L,ZHANG J W,LI W.Smoke detection method based on optical flow improvement and YOLOv3[J].Journal of Zhejiang University of Technology,2021,49(1):9-15. [33] 叶寒雨,李传昌,刘淼,等.基于稠密光流和目标检测的烟雾检测算法[J/OL].电光与控制:1-7[2022-03-18].http://kns.cnki.net/kcms/detail/41.1227.tn.20220314.1205.006.html. YE H Y,LI C C,LIU M,et al.Smoke detection method based on dense optical flow and target detection[J/OL].Electronics Optics & Control:1-7[2022-03-18].http://kns.cnki.net/kcms/detail/41.1227.tn.20220314.1205.006.html. [34] SHENG D,DENG J,XIANG J.Automatic smoke detection based on SLIC-DBSCAN enhanced convolutional neural network[J].IEEE Access,2021,9:63933-63942. [35] PUNDIR A S,RAMAN B.Dual deep learning model for image based smoke detection[J].Fire Technol,2019,55:2419-2442. [36] BAI X,WANG Z.Research on forest fire detection technology based on deep learning[C]//International Conference on Computer Network,Electronic and Automation(ICCNEA),2021:85-90. [37] 谢书翰,张文柱,程鹏,等.嵌入通道注意力的YOLOv4火灾烟雾检测模型[J].液晶与显示,2021,36(10):1445-1453. XIE S H,ZHANG W Z,CHENG P,et al.Fire smoke detection model based on YOLOv4 with channel attention[J].Chinese Journal of Liquid Crystals and Displays,2021,36(10):1445-1453. [38] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. [39] 汪梓艺,苏育挺,刘艳艳,等.一种改进DeeplabV3网络的烟雾分割算法[J].西安电子科技大学学报,2019,46(6):52-59. WANG Z Y,SU Y T,LIU Y Y,et al.Algorithm for segmentation of smoke using the improved DeeplabV3 network[J].Journal of Xidian University,2019,46(6):52-59. [40] CAI W,WANG C,HUANG H,et al.A real-time smoke detection model based on YOLO-SMOKE algorithm[C]//Cross Strait Radio Science & Wireless Technology Conference(CSRSWTC),2020:1-33. [41] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020:11531-11539. [42] ZHANG D,CAO Y,ZHANG G,et al.An attention convolutional neural network for forest fire smoke recognition[C]//International Conference on Systems and Informatics(ICSAI),2019:1207-1211. [43] WOO S,PARK J,LEE J,et al.Cbam:convolutional block attention module[J].arXiv:1807.06521,2018. [44] XU G,ZHANG Y,ZHANG Q,et al.Video smoke detection based on deep saliency network[J].Fire Safety Journal,2019,105:277-285. [45] 杨龙箴,袁非牛,杨寿渊,等.连续图卷积视频烟雾检测模型[J].中国图象图形学,2019,24(10):1658-1669. YANG L Z,YUAN F N,YANG S Y,et al.Continuous graph convolutional model for video smoke detection[J].Journal of Image and Graphics,2019,24(10):1658-1669. [46] GU K,XIA Z,QIAO J,et al.Deep dual-channel neural network for image-based smoke detection[J].IEEE Transactions on Multimedia,2020,22(2):311-323. [47] LIU T,CHENG J,DU X,et al.Video smoke detection method based on change-cumulative image and fusion deep network[J].Sensors,2019,19(23):5060. [48] 王洋,程江华,刘通,等.一种多网络模型融合的烟雾检测方法[J].计算机工程与科学,2019,41(10):1771-1776. WANG Y,CHENG J H,LIU T,et al.A smoke detection method based on fusing multiple network models[J].Computer Engineering & Science,2019,41(10):1771-1776. [49] 刘丽娟,陈松楠.一种基于改进SSD的烟雾实时检测模型[J].信阳师范学院学报(自然科学版),2020,33(2):305-311. LIU L J,CHEN S N.Real-time smoke detection model based on improved SSD[J].Journal of Xinyang Normal University(Natural Science Edition),2020,33(2):305-311. [50] 朱傥,杨忠,周国兴,等.一种轻量化网络的火焰烟雾检测算法[J].应用科技,2022,49(2):1-7. ZHU T,YANG Z,ZHOU G X,et al.A flame and smoke detection algorithm for lightweight networks[J].Applied Science and Technology,2022,49(2):1-7. [51] ZHAO Y,ZHANG H,ZHANG X,et al.Fire smoke detection based on target-awareness and depthwise convolutions[J].Multimedia Tools and Applications,2021,80(18):27407-27421. [52] HUO Y,ZHANG Q,JIA Y,et al.A deep separable convolutional neural network for multiscale image-based smoke detection[J].Fire Technology,2022,58:1445-1468. [53] YIN Z,WAN B,YUAN F,et al.A deep normalization and convolutional neural network for image smoke detection[J].IEEE Access,2017,5:18429-18438. [54] LIN G H,ZHANG Y M,XU G,et al.Smoke detection on video sequences using 3D convolutional neural networks[J].Fire Technology,2019:1-21. [55] 谢宏,陈祎婧,袁小芳,等.时空双路3D残差卷积网络的视频烟雾检测[J].计算机工程与应用,2020,56(18):143-149. XIE H,CHEN Y J,YUAN X F,et al.Video smoke detection using spatiotemporal dual path 3D residual convolutional network[J].Computer Engineering and Applications,2020,56(18):143-149. [56] 吴凡,王慧琴,王可.时空域深度学习火灾烟雾检测[J].液晶与显示,2021,36(8):1186-1195. WU F,WANG H Q,WANG K.Spatio-temporal deep learning fire smoke detection[J].Chinese Journal of Liquid Crystals and Displays,2021,36(8):1186-1195. [57] PENG Y,WANG Y.Real-time forest smoke detection using hand-designed features and deep learning[J].Computers and Electronics in Agriculture,2019,167:105029. [58] 刘通,程江华,华宏虎,等.结合YdUaVa颜色模型和改进MobileNetV3的视频烟雾检测方法[J].国防科技大学学报,2021,43(5):80-85. LIU T,CHENG J H,HUA H H,et al.Video smoke detection method combining YdUaVa color model and improved MobileNetV3[J].Journal of National University of Defense Technology,2021,43(5):80-85. [59] 吉森荣.基于改进Tiny-YOLOv3的烟雾检测算法[J].科学技术创新,2021(4):95-96. JI S R.Smoke detection algorithm based on improved Tiny-YOLOv3[J].Science and Technology Innovation,2021(4):95-96. [60] 陈朝晖,陈之宇.基于人工智能的轻量级模型对烟雾检测研究及应用[J].消防科学与技术,2020,39(12):1747-1750. CHEN Z H,CHEN Z Y.Research and application of lightweight model based on artificial intelligence for smoke detection[J].Fire Science and Technology,2020,39(12):1747-1750. [61] PAN J,OU X,XU L,et al.A collaborative region detection and grading framework for forest fire smoke using weakly supervised fine segmentation and lightweight Faster-RCNN[J].Forests,2021,12(6):768. [62] XIE C,TAO H.Generating realistic smoke images with controllable smoke components[J].IEEE Access,2020,8:201418-201427. [63] LI T,ZHU H,HU C,et al.An attention-based prototypical network for forest fire smoke few-shot detection[J].Journal of Forestry Research,2022. [64] WU Y,CHEN M,WO Y,et al.Video smoke detection base on dense optical flow and convolutional neural network[J].Multimedia Tools and Applications,2021,80(28):35887-35901. [65] 王文朋,毛文涛,何建樑,等.基于深度迁移学习的烟雾识别方法[J].计算机应用,2017,37(11):3176-3181. WANG W P,MAO W T,HE J L,et al.Smoke recognition based on deep transfer learning[J].Journal of Computer Applications,2017,37(11):3176-3181. [66] 张倩,周平平,王公堂,等.基于合成图像的Faster R-CNN森林火灾烟雾检测[J].山东师范大学学报(自然科学版),2019,34(2):180-185. ZHANG Q,ZHOU P P,WANG G T,et al.Faster R-CNN forest fire smoke detetion based on synthetic images[J].Journal of Shandong Normal University(Natural Science),2019,34(2):180-185. [67] 袁梅,全太锋,黄俊,等.基于卷积神经网络的烟雾检测[J].重庆邮电大学学报(自然科学版),2020,32(4):620-629. YUAN M,QUAN T F,HUANG J,et al.Smoke detection based on convolutional neural network[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020,32(4):620-629. |
[1] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[2] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[3] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[4] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[5] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[6] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[7] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[8] | 杨荣莹, 何庆, 杜逆索. 门控多特征提取器的中文命名实体识别[J]. 计算机工程与应用, 2022, 58(8): 117-124. |
[9] | 郭馨蔚, 马楠, 刘伟锋, 孙富春, 张津丽, 陈洋, 张国平. 咽拭子采集机器人表情识别与交互[J]. 计算机工程与应用, 2022, 58(8): 125-135. |
[10] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[11] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[12] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[13] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[14] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[15] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||