计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (13): 272-279.DOI: 10.3778/j.issn.1002-8331.2011-0407

• 工程与应用 • 上一篇    下一篇

融合高效注意力的重楼微性状鉴别方法研究

罗旭东,李宗桂,张俊华,李学芳,于文涛   

  1. 1.云南大学 信息学院,昆明 650500
    2.云南中医药大学 中药学院,昆明 650500
  • 出版日期:2022-07-01 发布日期:2022-07-01

Research on Classification Method of Micro Character of Paris Polyphylla with Efficient Attention Module

LUO Xudong, LI Zhonggui, ZHANG Junhua, LI Xuefang, YU Wentao   

  1. 1.School of Information Science and Engineering, Yunnan University, Kunming 650500, China
    2.School of Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
  • Online:2022-07-01 Published:2022-07-01

摘要: 重楼是多种中成药的重要原料药材,重楼属植物不同品种药材的形状相似而品质不一,难以鉴别。针对该问题,通过体视显微镜采集滇重楼及毛重楼的新鲜根茎横切面显微图像进行鉴别。基于ResNeXt101模型,提出了结合高效通道注意力网络与空间注意力机制的ES-Net模块,将每部分ResNeXt模块的输出进一步输入到ES-Net模块中,并使用Mixup方法进行数据增强。实验结果显示改进的模型对两种重楼根茎横切面图像的分类精度最高,为94.95%,比原ResNeXt101模型提高了2.07个百分点。实验结果表明,提出的ES-Net模块能有效增强原模型ResNeXt101对重楼新鲜根茎横切面图像的特征提取能力,提高对其的分类精度,提出的深度学习方法对重楼新鲜根茎自动鉴别具有实用价值。

关键词: 重楼, 深度学习, 注意力机制, ResNeXt101模型, Mixup

Abstract: Paris polyphylla is an important component of many Chinese patent medicines. Different kinds of paris polyphylla are very similar in shape but different in quality, making it difficult to identify. In response to this problem, this paper uses a stereo microscope to collect two kinds of cross-sectional microscopic images of fresh rhizome of the paris polyphylla to identify them. Based on the ResNeXt101 model, it proposes the ES-Net module combining an efficient channel attention network and a spatial attention module. The output of each part of the ResNeXt module is further input into the ES-Net module. The Mixup method is used for data enhancement. The experimental results show that the highest accuracy of the classification of the two kinds of the paris polyphylla images is 94.95%, which is 2.07 percentage points higher than the original ResNeXt101 model. The results show that the ES-Net module can effectively enhance the characteristic information extraction ability of the original model ResNeXt101 on the cross-sectional microscopic image of fresh rhizome of the Paris polyphylla. Therefore, it improves the classification accuracy for the paris polyphylla. The deep learning method proposed has practical value for automatic identification of fresh rhizome of the paris polyphylla.

Key words: paris polyphylla, deep learning, attention module, ResNeXt-101 model, Mixup