计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (12): 51-65.DOI: 10.3778/j.issn.1002-8331.2109-0110
马金林,裘硕,马自萍,陈勇
出版日期:
2022-06-15
发布日期:
2022-06-15
MA Jinlin, QIU Shuo, MA Ziping, CHEN Yong
Online:
2022-06-15
Published:
2022-06-15
摘要: 新型冠状病毒肺炎的高感染率导致其在全球范围内迅速传播,常用的逆转录-聚合酶反应(RT-PCR)检测方法存在耗时、假阴性率偏高和医学用具不足的缺陷,因此开发高效、准确、低成本的影像检测技术对新型冠状病毒肺炎的诊断和治疗至关重要。随着人工智能在医学领域的成功应用,深度学习技术成为辅助检验和识别新型冠状病毒肺炎的有效方法。对近年来涌现的新型冠状病毒肺炎的深度学习诊断方法进行了研究和总结:介绍了深度学习方法使用的两种新型冠状病毒肺炎数据集;介绍了基于VGGNet、Inception、ResNet、DenseNet、EfficientNet和CapsNet模型的六种深度学习诊断方法;介绍了三种深度学习与其他机器学习方法结合的诊断方法;对基于深度学习的新型冠状病毒肺炎诊断方法的研究趋势进行了展望。
马金林, 裘硕, 马自萍, 陈勇. 新型冠状病毒肺炎的深度学习诊断方法综述[J]. 计算机工程与应用, 2022, 58(12): 51-65.
MA Jinlin, QIU Shuo, MA Ziping, CHEN Yong. Review of Deep Learning Diagnostic Methods for COVID-19[J]. Computer Engineering and Applications, 2022, 58(12): 51-65.
[1] TANG S,BRADY M,MILDENHALL J,et al.The new coronavirus disease(COVID-19):what do we know so far?[J].Journal of Paramedic Practice,2020,12(5):193-201. [2] WANG W,XU Y,GAO R,et al.Detection of SARS-CoV-2 in different types of clinical specimens[J].JAMA The Journal of the American Medical Association,2020,323(18):1843-1844. [3] WEST C P,MONTORI V M,SAMPATHKUMAR P.COVID-19 testing:the threat of false-negative results[J].Mayo Clinic Proceedings,2020,95(6):1127-1129. [4] ZECH J R,BADGELEY M A,LIU M,et al.Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs:a cross-sectional study[J].Plos Medicine,2018,15(11):e1002683. [5] WANG Z,XIAO Y,LI Y,et al.Automatically discriminating and localizing COVID-19 from community-acquired pneumonia on chest X-rays[J].Pattern Recognition,2021,110:107613. [6] DOSOVITSKIY A,FISCHER P,SPRINGENBERG J T,et al.Discriminative unsupervised feature learning with exemplar convolutional neural networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(9):1734-1747. [7] PARVEEN N,SATHIK M M.Detection of pneumonia in chest X-ray images[J].Journal of X-ray Science and Technology,2011,19(4):423-428. [8] WANG L D,LIN Z Q,WONG A.COVID-Net:a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J].Scientific Reports,2020,10(1):1-12. [9] YANG X,HE X,ZHAO J,et al.COVID-CT-dataset:a CT scan dataset about COVID-19[J].arXiv:2003.13865,2020. [10] SONG Y,ZHENG S,LI L,et al.Deep learning enables accurate diagnosis of novel coronavirus(COVID-19) with CT images[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2021,18(6):2775-2780. [11] GOZES O,FRID-ADAR M,GREENSPAN H,et al.Rapid AI development cycle for the coronavirus(COVID-19) pandemic:initial results for automated detection & patient monitoring using deep learning CT image analysis[J].arXiv:2003.05037,2020. [12] LI L,QIN L,XU Z,et al.Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT[J].Radiology,2020,296:201178. [13] DAS D,SANTOSH K C,PAL U.Truncated inception net:COVID-19 outbreak screening using chest X-rays[J].Physical and Engineering Sciences in Medicine,2020,43(3):915-925. [14] RAHIMZADEH M,ATTAR A,SAKHAEI S M.A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset[J].Biomedical Signal Processing and Control,2021,68:102588. [15] SOARES E A,ANGELOV P P,BIASO S,et al.SARS-CoV-2 CT-scan dataset:a large dataset of real patients CT scans for SARS-CoV-2 identification[J].medRxiv,2020. [16] ZHANG K,LIU X H,SHEN J,et al.Clinically applicable AI system for accurate diagnosis,quantitative measurements,and prognosis of COVID-19 pneumonia using computed tomography[J].Cell,2020,181(6):1423-1433. [17] MA J,WANG Y,AN X,et al.Towards efficient COVID-19 CT annotation:a benchmark for lung and infection segmentation[J].arXiv:2004.12537,2020. [18] MOROZOV S P,ANDREYCHENKO A E,PAVLOV N A,et al.MosMedData:chest CT scans with COVID-19 related findings dataset[J].arXiv:2005.06465,2020. [19] COHEN J P,MORRISON P,LAN D,et al.COVID-19 image data collection:prospective predictions are the future[J].arXiv:2006.11988,2020. [20] PENG Y,TANG Y,LEE S,et al.COVID-19-CT-CXR:a freely accessible and weakly labeled chest X-ray and CT image collection on COVID-19 from biomedical literature[J].IEEE Transactions on Big Data,2021,7(1):3-12. [21] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [22] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [23] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [24] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [25] SABOUR S,FROSST N,HINTON G E.Dynamic routing between capsules[J].arXiv:1710.09829,2017. [26] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning,2019:6105-6114. [27] DAS A K,KALAM S,KUMAR C,et al.TLCoV-an automated COVID-19 screening model using transfer learning from chest X-ray images[J].Chaos Solitons & Fractals,2021,144:110713. [28] PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2010,22(2):199-210. [29] WANG S H,FERNANDES S,ZHU Z,et al.AVNC:attention-based VGG-style network for COVID-19 diagnosis by CBAM[J].IEEE Sensors Journal,2021(99):1. [30] FU J L,ZHENG H L,MEI T,et al.Look closer to see better:recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4438-4446. [31] SHIBLY K H,DEY S K,ISLAM M T U,et al.COVID faster R-CNN:a novel framework to diagnose novel coronavirus disease(COVID-19) in X-ray images[J].Informatics in Medicine Unlocked,2020,20:100405. [32] SAHA P,SADI M S,ARANYA O F M R R,et al.COV-VGX:an automated COVID-19 detection system using X-ray images and transfer learning[J].Informatics in Medicine Unlocked,2021,26:100741. [33] KHAN A I,SHAH J L,BHAT M M.CoroNet:a deep neural network for detection and diagnosis of COVID-19 from chest X-ray images[J].Computer Methods and Programs in Biomedicine,2020,196:105581. [34] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1251-1258. [35] WU Z,SHEN C,VAN DEN HENGEL A.Wider or deeper:revisiting the resnet model for visual recognition[J].Pattern Recognition,2019,90:119-133. [36] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision,2020,128(2):336-359. [37] GONCHAROV M,PISOV M,SHEVTSOV A,et al.CT-based COVID-19 triage:deep multitask learning improves joint identification and severity quantification[J].Medical Image Analysis,2021,71:102054. [38] ARDAKANI A A,KANAFI A R,ACHARYA U R,et al.Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images:results of 10 convolutional neural networks[J].Computers in Biology and Medicine,2020,121:9. [39] RAHIMZADEH M,ATTAR A.A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2[J].Informatics in Medicine Unlocked,2020,19:100360. [40] NARIN A,KAYA C,PAMUK Z.Automatic detection of coronavirus disease(COVID-19) using X-ray images and deep convolutional neural networks[J].arXiv:2003.10849,2020. [41] AHN J M,KIM S,AHN K S,et al.A deep learning model for the detection of both advanced and early glaucoma using fundus photography[J].Plos One,2019,14(1):2. [42] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,Inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,2017:4278-4284. [43] PATHAK Y,SHUKLA P K,TIWARI A,et al.Deep transfer learning based classification model for COVID-19 disease[J].Ingenierie et recherche biomedicale:IRBM=Biomedical Engineering and Research,2020,43(2). [44] UCAR F,KORKMAZ D.COVIDiagnosis-Net:deep bayes-squeezeNet based diagnosis of the coronavirus disease 2019(COVID-19) from X-ray images[J].Medical Hypotheses,2020,140:12. [45] POLSINELLI M,CINQUE L,PLACIDI G.A light CNN for detecting COVID-19 from CT scans of the chest[J].Pattern Recognition Letters,2020,140:95-100. [46] El-KENAWY E S M,MIRJALILI S,IBRAHIM A,et al.Advanced meta-heuristics,convolutional neural networks,and feature selectors for efficient COVID-19 X-Ray chest image classification[J].IEEE Access,2021,9:36019-36037. [47] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [48] WANG S,ZHA Y F,LI W M,et al.A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis[J].European Respiratory Journal,2020,56(2):11. [49] HASAN N,BAO Y,SHAWON A.DenseNet convolutional neural networks application for predicting COVID-19 using CT image[J].SN Computer Science,2021,2(5):1-11. [50] LODHI B,KANG J.Multipath-DenseNet:a supervised ensemble architecture of densely connected convolutional networks[J].Information Sciences,2019,482:63-72. [51] BABAEIPOUR R,AZIZI E,KHOTANLOU H.An empirical study on detecting COVID-19 in chest X-ray images using deep learning based methods[J].arXiv:2010.04936, 2020. [52] KINGMA D P,BA J.Adam:a method for stochastic optimization[J].arXiv:1412.6980,2014. [53] BLOSSOM,PAUL.The cross-entropy method:a unified approach to combinatorial optimization,Monte-Carlo simulation,and machine learning[J].Technometrics,2004,48(1):147-148. [54] MONTALBO F J P.Diagnosing COVID-19 chest X-rays with a lightweight truncated DenseNet with partial layer freezing and feature fusion[J].Biomedical Signal Processing and Control,2021,68:102583. [55] 冯毅博,仇大伟,曹慧,等.基于深度可分离稠密网络的新型冠状病毒肺炎X线图像检测方法研究[J].生物医学工程学杂志,2020,37(4):557-565. FENG Y B,QIU D W,CAO H,et al.Research on coronavirus disease 2019(COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images[J].Journal of Biomedical Engineering,2020,37(4):557-565. [56] HEIDARIAN S,AFSHAR P,ENSHAEI N,et al.COVID-FACT:a fully-automated capsule network-based framework for identification of COVID-19 cases from chest CT scans[J].arXiv:2010.16041,2020. [57] AFSHAR P,HEIDARIAN S,NADERKHANI F,et al.COVID-CAPS:a capsule network-based framework for identification of COVID-19 cases from X-ray images[J].Pattern Recognition Letters,2020,138:638-643. [58] TORAMAN S,ALAKUS T B,TURKOGLU I.Convolutional capsnet:a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks[J].Chaos Solitons & Fractals,2020,140:11. [59] MONSHI M M A,POON J,CHUNG V,et al.CovidXrayNet:optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR[J].Computers in Biology and Medicine,2021,133:104375. [60] CHOWDHURY N K,KABIR M A,RAHMAN M M,et al.ECOVNet:a highly effective ensemble based deep learning model for detecting COVID-19[J].PeerJ Computer Science,2021,7(7):e551. [61] BHATT A,GANATRA A,KOTECHA K.COVID-19 pulmonary consolidations detection in chest X-ray using progressive resizing and transfer learning techniques[J].Heliyon,2021,7(6):e07211. [62] HOWARD J,GUGGER S.Fastai:a layered API for deep learning[J].Information,2020,11(2):26. [63] TIWARI S,JAIN A.Convolutional capsule network for COVID-19 detection using radiography images[J].International Journal of Imaging Systems and Technology,2021,31(2):525-539. [64] BANERJEE A,BHATTACHARYA R,BHATEJA V,et al.COFE-Net:an ensemble strategy for computer-aided detection for COVID-19[J].Measurement,2022,187:110289. [65] QUAN H,XU X,ZHENG T,et al.DenseCapsNet:detection of COVID-19 from X-ray images using a capsule neural network[J].Computers in Biology and Medicine,2021,133:104399. [66] CANAYAZ M.MH-COVIDNet:diagnosis of COVID-19 using deep neural networks and meta-heuristic-based feature selection on X-ray images[J].Biomedical Signal Processing and Control,2021,64:12. [67] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105. [68] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks,1995:1942-1948. [69] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61. [70] CORTES C,VAPNIK V.Support-vector networks[J].Machine Learning,1995,20(3):273-297. [71] ?ZKAYA U,?ZTüRK ?,BARSTUGAN M.Coronavirus(COVID-19) classification using deep features fusion and ranking technique[M]//Big data analytics and artificial intelligence against COVID-19:innovation vision and approach.[S.l.]:Springer,2020:281-295. [72] TOGACAR M,ERGEN B,COMERT Z.COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches[J].Computers in Biology and Medicine,2020,121:12. [73] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE,2018:4510-4520. [74] FU G Z,SUN P Z,ZHU W B,et al.A deep-learning-based approach for fast and robust steel surface defects classification[J].Optics and Lasers in Engineering,2019,121:397-405. [75] DOGAN U,GLASMACHERS T,IGEL C.A unified view on multi-class support vector classification[J].The Journal of Machine Learning Research,2016,17(1):1550-1831. [76] VERMA S S,PRASAD A,KUMAR A.CovXmlc:high performance COVID-19 detection on X-ray images using multi-model classification[J].Biomedical Signal Processing and Control,2021:103272. [77] WU J,CHEN X Y,ZHANG H,et al.Hyperparameter optimization for machine learning models based on Bayesian optimization[J].Journal of Electronic Science & Technology,2019,17(1):26-40. [78] MOCKUS J.On the Bayes methods for seeking the extremal point[J].IFAC Proceedings Volumes,1975,8(1):428-431. [79] GHOSHAL B,TUCKER A.Estimating uncertainty and interpretability in deep learning for coronavirus(COVID-19) detection[J].arXiv:2003.10769,2020. [80] GHOSHAL B,LINDSKOG C,TUCKER A.Estimating uncertainty in deep learning for reporting confidence:an application on cell type prediction in testes based on proteomics[C]//International Symposium on Intelligent Data Analysis.Cham:Springer,2020:223-234. [81] HE K M,ZHANG X Y,REN S Q,et al.Identity mappings in deep residual networks[C]//European Conference on Computer Vision.Cham:Springer,2016:630-645. [82] HU H,SHEN L,GUAN Q,et al.Deep co-supervision and attention fusion strategy for automatic COVID-19 lung infection segmentation on CT images[J].arXiv:2112.10368,2021. [83] ELAZAB A,ABD ELFATTAH M,ZHANG Y.Novel multi-site graph convolutional network with supervision mechanism for COVID-19 diagnosis from X-ray radiographs[J].Applied Soft Computing,2021,114:108041. [84] ZHENG C,DENG X,FU Q,et al.Deep learning-based detection for COVID-19 from chest CT using weak label[J].MedRxiv,2020. [85] ZHOU Z H.A brief introduction to weakly supervised learning[J].National Science Review,2018,5(1):44-53. [86] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[M]//NAVAB N,HORNEGGER J,WELLS W M,et al.Medical image computing and computer-assisted intervention.Pt Iii.Cham:Springer International Publishing Ag,2015:234-241. [87] UEMURA T,NAPPI J J,WATARI C,et al.Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT[J].Medical Image Analysis,2021,73:102159. [88] CHIKONTWE P,LUNA M,KANG M,et al.Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening[J].Medical Image Analysis,2021:102105. [89] MANSOUR R F,ESCORCIA-GUTIERREZ J,GAMARRA M,et al.Unsupervised deep learning based variational autoencoder model for COVID-19 diagnosis and classification[J].Pattern Recognition Letters,2021,151:267-274. [90] BARGSHADY G,ZHOU X,BARUA P D,et al.Application of CycleGAN and transfer learning techniques for automated detection of COVID-19 using X-ray images[J].Pattern Recognition Letters,2022,153:67-74. [91] HOWARD A,SANDLER M,CHU G,et al.Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:1314-1324. [92] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [93] 毕鹏程,罗健欣,陈卫卫.轻量化卷积神经网络技术研究[J].计算机工程与应用,2019,55(16):25-35. BI P C,LUO J X,CHEN W W.Research on lightweight convolutional neural network technology[J].Computer Engineering and Applications,2019,55(16):25-35. |
[1] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[2] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[3] | 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207. |
[4] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[5] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[6] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[7] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[8] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[9] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[10] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[11] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[12] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[13] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[14] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[15] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||