计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (12): 139-148.DOI: 10.3778/j.issn.1002-8331.2111-0300
王琴,王鑫,颜靖柯,钟美玲,曾静
WANG Qin, WANG Xin, YAN Jingke, ZHONG Meiling, ZENG Jing
摘要: 为使题注生成模型生成流畅、连贯和信息丰富的特定信息题注,在Transformer架构的基础上提出了Transformer Chart to Text(TransChartText)模型。通过筛选各种科研论文和新闻文章网站,制作了基于图表的题注描述数据集,该数据集的英语题注描述涵盖了丰富的数据类别和逻辑推理。引入数据变量替换图表数据值,有效提高了模型生成题注的内容选择,促使模型生成了连贯的题注内容。为进一步增强模型学习词与词之间位置关系的能力并降低错误词序频率,模型分别对编码器和解码器引入空间位置嵌入编码和集束搜索算法。实验结果表明,TransChartText模型在内容选择(CS)、内容排序(CO)、ROUGE、BLEU指标上取得了更好的分数,生成了高质量的基于图表的英语题注。