计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (11): 250-259.DOI: 10.3778/j.issn.1002-8331.2110-0375
于海涛,李福龙,刘亚姣,王江,于利峰,张春晖,刘宝顺,马永福
YU Haitao, LI Fulong, LIU Yajiao, WANG Jiang, YU Lifeng, ZHANG Chunhui, LIU Baoshun, MA Yongfu
摘要: 针对型钢表面缺陷种类多样、微小缺陷占比较大导致的检测效率低、检测精度差的问题,提出了一种基于双重多尺度注意力机制的表面缺陷检测方法DMSA-YOLOv3,实现型钢表面多尺度缺陷快速精确检测。构建了基于通道和空间的双重多尺度注意力模型DMSA,对不同尺度特征进行筛选融合,强化小尺度缺陷的特征权重;改进了YOLOv3模型,使用深度可分离卷积对DarkNet53特征提取主干网络实现轻量化处理,提高检测速度,并构建多尺度长距离上下文特征提取层,使用4种不同扩张率的并行空洞卷积替代全局池化,提高模型对小尺寸缺陷的特征提取能力;构建了融合DMSA模型和改进YOLOv3模型的DMSA-YOLOv3缺陷检测模型,并应用于型钢表面多尺度缺陷检测。实验结果表明:DMSA-YOLOv3模型具有97.6%的多类别平均检测精度和55.3?frame/s的检测速度,与YOLOv3模型相比分别提升了4.7个百分点和24.5?frame/s;最小可检出20×20像素(约10×10?mm2)缺陷,与YOLOv3模型相比提高了6.25倍,有效提升了型钢表面缺陷的检测精度与检测速度。