计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 14-21.DOI: 10.3778/j.issn.1002-8331.2012-0367
翟正利,李鹏辉,冯舒
ZHAI Zhengli, LI Penghui, FENG Shu
摘要:
将深度学习用于图数据建模已经在包括节点分类、链路预测和图分类等在内的复杂任务中表现出优异的性能,但是图神经网络同样继承了深度神经网络模型容易在微小扰动下导致错误输出的脆弱性,引发了将图神经网络应用于金融、交通等安全关键领域的担忧。研究图对抗攻击的原理和实现,可以提高对图神经网络脆弱性和鲁棒性的理解,从而促进图神经网络更广泛的应用,图对抗攻击已经成为亟待深入研究的领域。介绍了图对抗攻击相关概念,将对抗攻击算法按照攻击策略分为拓扑攻击、特征攻击和混合攻击三类;进而,归纳每类算法的核心思想和策略,并比较典型攻击的具体实现方法及优缺点。通过分析现有研究成果,总结图对抗攻击存在的问题及其发展方向,为图对抗攻击领域进一步的研究和发展提供帮助。