计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (5): 222-228.DOI: 10.3778/j.issn.1002-8331.2005-0328
金旺,易国洪,洪汉玉,陈思媛
JIN Wang, YI Guohong, HONG Hanyu, CHEN Siyuan
摘要:
为了解决对于尺度变换较大车辆及遮挡车辆检测性能不足的问题,提出了一种实时车辆检测模型。针对车辆检测算法对于尺度敏感的问题,通过使用深度残差网络作为特征提取层,构建特征金字塔网络用于多尺度检测;利用软化非极大抑制线性衰减置信得分解决车辆遮挡问题,从而降低车辆的漏检率;同时对模型进行通道级裁剪缩减模型参数规模,节省计算资源,提高模型检测速度。在VOC数据集上进行实验,结果表明,提出的方法在检测精度和检测速度上均获得较高的性能。在检测精度上,达到87.6%的准确率,相较于YOLOv3提升了3.7个百分点,相较于SSD提升了9.8个百分点;在检测速度上,每秒检测帧数达到42 f/s,实现了车辆的实时检测。特别地,将模型应用于环境复杂的Apollo数据集,相较于YOLOv3具有更好的鲁棒性。