计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (3): 87-93.DOI: 10.3778/j.issn.1002-8331.1911-0242
高天宇,王庆荣,杨磊
GAO Tianyu, WANG Qingrong, YANG Lei
摘要:
在粗糙集的核心方法属性约简理论中,针对次要属性过多时属性依赖度一致引发的约简困难现象,以粗糙集属性依赖度强化为基本方法构建数据挖掘模型。模型中,计算各属性在组合中的依赖度,将组合中的依赖度合并于各属性从而强化属性依赖度。为合理化计算过程,给出一种离散化方法并构建探索模型进行实验,缩小离散量范围与属性组合范围。最后所得依赖度作为属性重要性,挖掘重要属性。实验证明,在部分地区5级以上震后经济损失影响因素分析中,比较传统属性约简,该模型可更有效地分析属性之间的重要性,解决了约简困难的问题,使用测试数据时该模型与传统方法的结果有86%的一致性。