计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (24): 83-89.DOI: 10.3778/j.issn.1002-8331.2012-0080
徐辰华,骆珠光,吴冠宏,刘斌
XU Chenhua, LUO Zhuguang, WU Guanhong, LIU Bin
摘要:
针对基本灰狼优化算法在求解复杂问题时,存在依赖初始种群、过早收敛和易陷入局部最优等缺点,提出一种融合正弦控制因子和量子局部搜索的灰狼优化算法(QGWO)。通过对灰狼算法中的控制因子按照具有正弦变化的曲线变化,使改进后的算法在迭代前期加快收敛速度以快速完成全局搜索,并且在迭代后期减缓收敛速度以提高算法精度。引入量子局部搜索降低算法陷入局部最优的概率。选用12个标准测试函数对QGWO算法性能进行验证,分别从单峰、多峰和固定维测试函数对比分析。实验结果表明,与GWO、WOA、SCA和CGWO相比,QGWO对测试函数的求解有更高的精度和稳定性。通过工程实例优化KELM进行分类实验验证,QGWO表现出更好的寻优性能。