计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 234-240.DOI: 10.3778/j.issn.1002-8331.2011-0199
黄梅根,刘佳乐,刘川
HUANG Meigen, LIU Jiale, LIU Chuan
摘要:
构建三元组时在文本句子中抽取多个三元组的研究较少,且大多基于英文语境,为此提出了一种基于BERT的中文多关系抽取模型BCMRE,它由关系分类与元素抽取两个任务模型串联组成。BCMRE通过关系分类任务预测出可能包含的关系,将预测关系编码融合到词向量中,对每一种关系复制出一个实例,再输入到元素抽取任务通过命名实体识别预测三元组。BCMRE针对两项任务的特点加入不同前置模型;设计词向量优化BERT处理中文时以字为单位的缺点;设计不同的损失函数使模型效果更好;利用BERT的多头与自注意力机制充分提取特征完成三元组的抽取。BCMRE通过实验与其他模型,以及更换不同的前置模型进行对比,在F1的评估下取得了相对较好的结果,证明了模型可以有效性提高抽取多关系三元组的效果。