计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (19): 104-111.DOI: 10.3778/j.issn.1002-8331.2009-0097
杨薛钰,陈建平,傅启明,陆悠,吴宏杰
YANG Xueyu, CHEN Jianping, FU Qiming, LU You, WU Hongjie
摘要:
针对深度确定性策略梯度算法(DDPG)收敛速度比较慢,训练不稳定,方差过大,样本应用效率低的问题,提出了一种基于随机方差减小梯度方法的深度确定性策略梯度算法(SVR-DDPG)。该算法通过利用随机方差减小梯度技术(SVRG)提出一种新的创新优化策略,将之运用到DDPG算法之中,在DDPG算法的参数更新过程中,加入了随机方差减小梯度技术,利用该方法的更新方式,使得估计的梯度方差有一个不断减小的上界,令方差不断缩小,从而在小的随机训练子集的基础上找到更加精确的梯度方向,以此来解决了由近似梯度估计误差引发的问题,加快了算法的收敛速度。将SVR-DDPG算法以及DDPG算法应用于Pendulum和Mountain Car问题,实验结果表明,SVR-DDPG算法具有比原算法更快的收敛速度,更好的稳定性,以此证明了算法的有效性。