计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (16): 90-96.DOI: 10.3778/j.issn.1002-8331.2007-0105
李松,刘哲,唐小妹,吴健,王飞雪
LI Song, LIU Zhe, TANG Xiaomei, WU Jian, WANG Feixue
摘要:
对于非线性系统而言,容积卡尔曼滤波(Cubature Kalman Filter,CKF)算法是处理状态估计问题的一种有效方法,并且其在高斯噪声下可以获得良好的估计性能。然而,当噪声被重尾噪声污染时,其性能通常会急剧下降。为解决此问题,将Huber方法应用于CKF框架中,取代了传统的最小均方误差(Minimum Mean Square Error,MMSE)准则,以提高算法的鲁棒性。在所提算法中,通过将量测方程线性化构造了线性回归模型,并采用固定点迭代的方法求解基于Huber方法的最小化问题。因此,推导了基于固定点迭代的Huber鲁棒CKF(FP-IHCKF)算法,在该算法中先验信息和量测信息通过Huber方法进行了重构。通过对再入目标跟踪问题进行仿真,验证了所提算法的有效性和鲁棒性。