计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (15): 223-229.DOI: 10.3778/j.issn.1002-8331.2005-0068
周锐烨,沈文忠
ZHOU Ruiye, SHEN Wenzhong
摘要:
在虹膜识别系统中,异质虹膜图像(可见光和红外图像)的分割是最重要且最有挑战性的一个任务,该任务的难点在于针对异质虹膜图像,要同时兼顾虹膜分割的准确率和快速性。提出了适用于异质虹膜分割的神经网络模型PI-Unet(Precise Iris Unet)以及用于训练该网络模型的数据增强方法和损失函数。对PI-Unet的Encoder和Decoder进行实验探索,得出能同时兼顾准确率和快速性的网络结构,将提出的数据增强方法和损失函数用于该网络进行训练,在CASIA-iris-intervel-v4和UBIRIS.v2虹膜图像数据库上测试该网络的准确率、参数量和计算量。测试结果表明,提出的数据增强方法和损失函数能有效提高异质虹膜分割准确率,PI-Unet与传统虹膜分割算法和其他虹膜分割神经网络相比,对异质虹膜图像的分割准确率更高且参数量和计算量更少,能够适用于低性能的边缘计算设备。