计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (15): 140-146.DOI: 10.3778/j.issn.1002-8331.2004-0385
苏庆,林华智,黄剑锋,林志毅
SU Qing, LIN Huazhi, HUANG Jianfeng, LIN Zhiyi
摘要:
针对恶意安卓应用程序检测中存在的特征维度大、检测效率低的问题,结合卷积神经网络CNN良好的特征提取和降维能力以及catboost算法无需广泛数据训练即可产生较好分类结果的优点,构建一个CNN-catboost混合恶意安卓应用检测模型。通过逆向工程获取安卓应用的权限、API包、组件、intent、硬件特性和OpCode特征等静态特征并映射为特征向量,再在特征处理层使用卷积核对特征进行局部感知处理以增强信号。使用最大池化对处理后的特征进行下采样,降低维数并保持特征性质不变。将处理后的特征作为catboost分类层的输入向量,利用遗传算法的全局寻优能力对catboost模型进行调参,进一步提升分类准确率。对训练完成的模型,分别使用已知和未知类型的安卓应用程序数据集作实际应用测试。实验结果表明CNN-catboost模型调参用时较少,在预测精度和检测效率上也展示出较为良好的效果。