计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (13): 269-275.DOI: 10.3778/j.issn.1002-8331.2006-0175
陈丹蕾,陈红,任安虎
CHEN Danlei, CHEN Hong, REN Anhu
摘要:
针对交通流预测过程中城市道路路网的空间特征难以充分提取,导致预测结果精度不高的问题,提出图卷积网络(GCN)与门控循环单元(GRU)组合短时交通流预测模型。利用GCN对拓扑结构数据处理的优势,将城市道路路网空间排列结构转换为拓扑关系建模,通过解决拓扑关系问题有效提取出路网间的空间特征。采用GraphSAGE算法改进GCN模型,通过加和聚合算子和图注意力机制(GAT)聚合空间特征,将包含空间特征的输出作为GRU模型的输入提取时间特征。利用真实道路车流量数据进行模型验证,结果表明该模型相较于不具有GCN的模型预测准确率提升约8%,均方误差缩小约0.010?37,说明所提模型具有相对较高的稳定性及预测精度,可以为大型城市路网提供重要的交通诱导依据。