计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (8): 270-278.DOI: 10.3778/j.issn.1002-8331.1911-0282
• 工程与应用 • 上一篇
胡春阳,姜平,周根荣
HU Chunyang, JIANG Ping, ZHOU Genrong
摘要:
针对传统蚁群算法在路径规划时,易陷入局部最优、前期路径有效性差等问题,对传统蚁群算法进行改进并应用到AGV(Automated Guided Vehicle)路径规划上。采用栅格地图建立小车工作空间模型,利用改进的头尾搜索机制,提高并加快了算法的全局搜索能力和前期收敛速度;引入奖惩因子与信息素最大最小阈值,对每代最优路径上的信息素进行奖励,最差路径上的进行惩罚,提高全局搜索能力;引入遗传算法变异因子,使算法跳出局部最优能力加强;采用遗传算法对改进的蚁群算法进行参数优化,减少参数对算法的影响。在VS2017和MATLAB软件平台上进行算法仿真。结果表明了该算法在避免局部最优和加快收敛速度方面有很大改进。