计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (8): 171-176.DOI: 10.3778/j.issn.1002-8331.1907-0064
顾振辉,姜文刚
GU Zhenhui, JIANG Wengang
摘要:
遥感图像中舰船朝向不确定性,舰船种类的多样性以及和其他海上及港口物体之间的相似性,使舰船检测的性能下降严重。针对这一问题,使用一种简单且有效的方法来训练有旋转不变性和Fisher判别的Mask R-CNN舰船检测模型,通过优化模型的目标函数以提高舰船检测性能,在保持原有检测模型结构不变的基础上引入两个正则化器,第一个正则化器加强训练样本旋转之前和之后的特征联系,第二个正则化器限制卷积神经网络有小的类内散度和大的类间散度。实验中,在Kaggle遥感图像船只检测数据集上验证了所提出的方法提高了检测遥感图像中舰船目标的性能。