计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (20): 36-45.DOI: 10.3778/j.issn.1002-8331.1911-0123

• 理论与研发 • 上一篇    下一篇

自适应动态学习鸡群优化算法

顾艳春,鲁海燕,向蕾,沈莞蔷   

  1. 1.江南大学 理学院,江苏 无锡 214122
    2.江南大学 无锡市生物计算工程技术研究中心,江苏 无锡 214122
  • 出版日期:2020-10-15 发布日期:2020-10-13

Adaptive Dynamic Learning Chicken Swarm Optimization Algorithm

GU Yanchun, LU Haiyan, XIANG Lei, SHEN Wanqiang   

  1. 1.School of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
    2.Wuxi Engineering Technology Research Center for Biological Computing, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2020-10-15 Published:2020-10-13

摘要:

针对标准鸡群优化算法存在求解精度偏低、局部搜索能力弱等问题,提出了一种自适应动态学习鸡群优化算法ADLCSO(Adaptive Dynamic Learning Chicken Swarm Optimization algorithm)。该算法利用反向觅食机制自适应更新每只公鸡的位置,并添加了非线性递减学习因子来动态调整公鸡位置的更新步长,以增强种群跳出局部极值的能力,从而提高算法的收敛速度和求解精度。此外,提出了一种基于个体间适应度值之差的种群相似度指标,并利用该指标对每只母鸡的位置进行自适应调整,以抑制种群多样性的衰减,从而进一步提高算法的求解精度。通过对12个经典测试函数进行仿真实验,结果表明ADLCSO算法在收敛速度、求解精度、稳定性及对高维问题的求解能力上均优于其他对比算法。

关键词: 鸡群算法, 反向觅食机制, 非线性递减学习因子, 种群相似度指标

Abstract:

Aiming at the issues of low solution precision and weak local search ability of the basic chicken swarm optimization algorithm, an Adaptive Dynamic Learning Chicken Swarm Optimization algorithm(ADLCSO) is proposed in this paper. The algorithm adaptively updates each rooster’s position using a reverse foraging mechanism and adds a non-linear decreasing learning factor to dynamically adjust the update step size of the rooster’s position, so as to enhance the ability of the population to jump out of local extremum, and thus to improve the convergence speed and solution precision of the algorithm. In addition, a population similarity index based on the difference of fitness values between individuals is proposed, and then is used to adaptively adjust the position of each hen in order to inhibit the attenuation of population diversity and further improve the solution precision of the algorithm. Through the simulation experiments on 12 classical test functions, the results show that the ADLCSO algorithm is superior to other comparison algorithms in terms of convergence speed, solution precision, stability and the ability to solve high-dimensional problems.

Key words: chicken swarm algorithm, reverse foraging mechanism, non-linear decreasing learning factor, population similarity index