计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (17): 60-68.DOI: 10.3778/j.issn.1002-8331.1907-0407
郭圣,仲兆满,李存华
GUO Sheng, ZHONG Zhaoman, LI Cunhua
摘要:
传统子空间浅层聚类模型对于多视图和非线性数据的聚类性能不佳。为此,提出一种基于深度自编码器的多视图子空间聚类网络模型,通过在深度自编码器中引入子空间聚类中的“自我表示”特性以及加权稀疏表示,提升了多视图子空间聚类算法的学习能力。推导的深度自编码多视图子空间聚类算法能够聚类具有复杂结构的数据点。通过多视图数据集验证了提出算法的有效性。结果表明,该方法能够有效地挖掘数据固有的多样性聚类结构,并利用多个视图之间互补信息,在性能上与现有方法相比有较大的提升。