计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (16): 132-138.DOI: 10.3778/j.issn.1002-8331.1906-0027

• 模式识别与人工智能 • 上一篇    下一篇

应用通道增强MSER与CNN的维吾尔文本区域定位

艾合麦提江·麦提托合提,艾斯卡尔·艾木都拉,阿布都萨拉木·达吾提   

  1. 1.新疆大学 信息科学与工程学院,乌鲁木齐 830046
    2.新疆大学 软件学院,乌鲁木齐 830046
  • 出版日期:2020-08-15 发布日期:2020-08-11

Uyghur Text Regions Localization Using Channel-Enhanced MSER and CNN

Ahmatjan Mattohti, Askar Hamdulla, Abdusalam Dawut   

  1. 1.College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
    2.School of Software, Xinjiang University, Urumqi 830046, China
  • Online:2020-08-15 Published:2020-08-11

摘要:

为了准确有效地定位出图像中的维吾尔文本区域,提出了一种基于通道增强最大稳定极值区域(Maximally Stable Extremal Region,MSER)和卷积神经网络(Convolutional Neural Network,CNN)的图像文本区域定位方法。应用通道增强MSER提取候选区域,根据文本特征的启发式规则以及CNN分类结果去除非文本和重复区域,通过区域融合算法得到词级别文本区域,根据该区域的色彩相近程度和空间关系召回遗漏的文本区域,并通过CNN网络对召回的区域分类融合,定位出图像文本区域。实验结果表明,该方法可以准确有效地定位文本区域,具有鲁棒性和应用性。

关键词: 图像文本, 维吾尔文本区域定位, 通道增强MSER, 卷积神经网络, 区域融合算法

Abstract:

In order to locate Uyghur text regions in images accurately and effectively, an image text region location method based on channel enhancement Maximally Stable Extremal Region(MSER) and Convolutional Neural Network(CNN) is proposed. Channel-enhanced MSER is applied to extract candidate regions, non-text and repeated regions are removed according to heuristic rules of text features and CNN classification results, word-level text regions are obtained through a region fusion algorithm, missing text regions are recalled according to the color similarity and spatial relationship of the regions, and the recalled regions are classified and fused through CNN to locate image text regions. The experimental results show that the proposed method can locate text regions accurately and effectively, and has robustness and applicability.

Key words: image text, Uyghur text regions localization, channel-enhanced MSER, Convolutional Neural Network(CNN), region fusion algorithm