计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (15): 118-123.DOI: 10.3778/j.issn.1002-8331.1905-0074
李斌,张彩霞,杨阳,张文生
LI Bin, ZHANG Caixia, YANG Yang, ZHANG Wensheng
摘要:
复杂地物背景下的无人机检测是“低小慢”目标检测任务中的难点问题。针对环境物体的扰动、无人机目标小而导致无人机目标检测算法准确率低,提出一种基于深度表示的复杂场景无人机目标检测方法。针对无人机目标位置检测不准确的问题,采用广义交并比度量目标真实位置与候选目标位置的偏差。针对正负样本不均衡和易分样本多而导致的学习效果差的问题,通过焦点损失的调制系数,降低负样本和易分样本的损失贡献。调整位置损失与类别损失的权重,提升位置准确性。为了验证性能,建立了一个无人机数据集。实验表明该算法在无人机数据上比YOLOv3提升了20.04%,在PASCAL VOC上比SSD和Retinanet的检测精度提升巨大。