计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (12): 47-53.DOI: 10.3778/j.issn.1002-8331.1905-0357
谭阳,唐德权,曹守富
TAN Yang, TANG Dequan, CAO Shoufu
摘要:
聚类混合型数据,通常是依据样本属性类别的不同分别进行评价。但这种将样本属性划分到不同子空间中分别度量的方式,割裂了样本属性原有的统一性;导致对样本个体的相似性评价产生了非一致的度量偏差。针对这一问题,提出以二进制编码样本属性,再由海明差异对属性编码施行统一度量的新的聚类算法。新算法通过在统一的框架内对混合型数据实施相似性度量,避免了对样本属性的切割,在此基础上又根据不同属性的性质赋予其不同的权重,并以此评价样本个体之间的相似程度。实验结果表明,新算法能够有效地聚类混合型数据;与已有的其他聚类算法相比较,表现出更好的聚类准确率及稳定性。