计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (11): 67-74.DOI: 10.3778/j.issn.1002-8331.1901-0435
李全,许新华,刘兴红,林松
LI Quan, XU Xinhua, LIU Xinghong, LIN Song
摘要:
随着基于位置社交网络(Location-Based Social Network,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐可以帮助人们发现有趣的并吸引人的位置。针对签到数据的稀疏性和用户兴趣的动态性等挑战性问题,提出了基于LBSN动态异构网络的时间感知兴趣点推荐算法。在LBSN异构网络模式中增加会话节点类型。通过动态元路径,在用户和兴趣点语义关系之间有效地融入时间信息、位置信息和社交信息等。设置了用户-兴趣点之间的动态元路径集,并提出了动态路径实例的偏好度计算方法。采用矩阵分解模型对不同动态偏好矩阵进行矩阵分解。根据不同动态元路径的用户特征矩阵和兴趣点特征矩阵,获取用户在目标时间访问兴趣点的推荐列表。实验结果表明,与其他兴趣点推荐方法相比,所提方法在兴趣点推荐精确度上取得了较好的推荐结果,具有良好的应用前景。