计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (6): 257-264.DOI: 10.3778/j.issn.1002-8331.1712-0145
闫 旭,叶春明
YAN Xu, YE Chunming
摘要: 作为新兴的智能算法,蝗虫优化算法在作业车间调度问题中的应用符合智能制造的趋势。但由于全局寻优能力不足,基本蝗虫优化算法(GOA)在解决作业车间调度问题(JSP)时容易陷入局部最优,导致收敛精度较低。为了克服上述缺陷,利用量子旋转门操作对其进行改进,提出了一种基于量子计算思想的混合蝗虫优化算法(HGOA)。此外,对混合蝗虫优化算法进行了计算复杂度分析与全局收敛性证明,并利用11个作业车间标准测试问题进行了仿真实验。通过与基本蝗虫优化算法(GOA)、鲸鱼优化算法(WOA)、布谷鸟搜索算法(CS)、灰狼优化算法(GWO)的比较发现,混合蝗虫优化算法在平均值、最小值、寻优成功率及迭代次数方面存在较优结果。研究表明,混合蝗虫优化算法具有更强的全局搜索能力,更好的收敛精度,能够有效跳出局部最优。