计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (21): 214-219.DOI: 10.3778/j.issn.1002-8331.1903-0381
王丽婷,张金鑫,张金华
WANG Liting, ZHANG Jinxin, ZHANG Jinhua
摘要: 参数的选择对支持向量机(SVM)分类精度和泛化能力有至关重要的影响,而群体智能算法近年来在参数优化方面应用广泛,在此背景下提出CSA-SVM模型。该模型将分类准确率作为目标函数,利用乌鸦搜索算法(CSA)求得SVM的最优参数组合。为了验证CSA-SVM模型的分类性能,将该模型应用于6个标准分类数据集,并分别与遗传算法(GA)和粒子群(PSO)算法优化后的SVM模型进行性能比较。实验结果表明,CSA算法在SVM参数选择中具有更好地寻优能力和更快地寻优速度,CSA-SVM模型具有较高的分类准确率。