计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (21): 151-157.DOI: 10.3778/j.issn.1002-8331.1807-0136
冯译萱,张月霞
FENG Yixuan, ZHANG Yuexia
摘要: 真实网络大多是有向的,且网络结构随时间动态变化,传统的链路预测方法大多适用于无向网络,其分析方法不能有效挖掘真实网络中的信息。针对以上问题,提出了一种基于归一化AA和LAS的时序有向的链路预测算法,该算法基于共同邻居、节点度属性及局部社团相似性,为每个链接分配时间影响因子并将其引入NALAS指标进行计算,考虑了网络有向性和网络历史结构的影响。在真实社会网络数据集上对该算法进行了仿真并与Salton、Jaccard等算法进行对比。结果表明,提出的算法与其他算法相比,预测精度得到了提高,说明该算法可以有效地在时序有向的社会网络中进行链路预测。