计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (17): 35-43.DOI: 10.3778/j.issn.1002-8331.1903-0401
封声飞,雷琦,吴文烈,宋豫川
FENG Shengfei, LEI Qi, WU Wenlie, SONG Yuchuan
摘要: 针对传统蚁群算法在路径规划中存在收敛速度和寻优能力不平衡,算法易陷入局部最优等问题,提出一种自适应改进蚁群算法。为了提高算法收敛速度,在栅格环境下,根据最优路径的特点以及实际环境地图的基本参数,对初始信息素进行差异化分配;为了提高蚂蚁搜索效率,在状态转移概率中引入转角启发信息并对路径启发信息进行改进;重新制定信息素更新策略,设定迭代阈值,调整信息素挥发系数和信息素浓度,使算法在迭代后期依然具有较强的搜索最优解能力;采用分段三阶贝塞尔曲线对最优路径进行平滑处理以满足机器人实际运动要求。通过实验仿真与其他算法进行对比分析,验证了改进算法的可行性、有效性和优越性。