计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (16): 108-114.DOI: 10.3778/j.issn.1002-8331.1805-0146
喻涛,罗可
YU Tao, LUO Ke
摘要: 结合不同产品的评论词信息来构建智能化的情感分类器,提出一种结合产品特征的在线商品评论情感分类模型PWCNN(Product Weight Convolution Neural Network)。模型首先进行产品词特征的词向量训练,将评论文本以及产品信息进行向量乘法组合,结果作为模型输入。然后根据句子的重要性,采用池化加权的卷积神经网络来学习评论的文档级表示。为了防止过拟合且提高泛化能力,在输出层采用dropout策略。实验结果表明,PWCNN模型在平均准确率和[F1]值等指标上取得最好结果,且提高了模型训练速度。