计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (11): 257-264.DOI: 10.3778/j.issn.1002-8331.1803-0236
曹菁菁1,任欣欣2,徐贤浩2
CAO Jingjing1, REN Xinxin2, XU Xianhao2
摘要: 传统的频繁路径挖掘分析主要通过关联规则算法实现,但其在处理大型数据集时,会产生占用内存过多,数据处理速度慢等问题,对此提出一种基于Fuzzy [c]-means聚类算法的并行Apriori算法模型。该模型通过Fuzzy [c]-means算法完成对原始数据集的聚类分析,将同一区域的物流路径数据划分到内部相似度较高的数据类,并利用Apriori算法对各数据类中的频繁模式进行挖掘分析,进而获得各区域的物流频繁路径。同时通过Hadoop平台实现算法的并行化,有效提高算法运行效率和质量。通过对物流频繁路径的挖掘分析,使管理者更清楚货物流向,可为配送路径优化等决策提供支持。