计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (11): 153-159.DOI: 10.3778/j.issn.1002-8331.1803-0037
姜道银1,2,葛洪伟1,2
JIANG Daoyin1,2, GE Hongwei1,2
摘要: 连续域蚁群优化算法(ACOR)在求解优化问题时,全局寻优能力弱,寻优结果精度低。受自然界中优秀的个体之间相互交流和结合可以产生较优的后代的启发,提出了一种基于信息交流策略的连续域蚁群优化算法(ICACO)。ICACO算法在对解的更新过程中选取一部分较优解利用信息交流策略进行处理得到候选解,并采用贪婪方式接受能够改善解的质量的候选解。通过标准测试函数对所提算法进行测试,实验结果表明ICACO算法能够有效地提高ACOR算法寻优结果的精度并加快收敛速度。该算法与相关改进的连续域蚁群算法及其他智能优化算法相比全局搜索能力更高,效果更好。