计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (4): 66-71.DOI: 10.3778/j.issn.1002-8331.1701-0197
刘 康1,张雪英1,李凤莲1,田玉楚1,2
LIU Kang1, ZHANG Xueying1, LI Fenglian1, TIAN Yuchu1,2
摘要: 海量社交网络数据中蕴含着丰富的信息,图论是挖掘这些信息的重要方法之一。面对日益增多的图数据,分布式计算成为处理大规模图数据的有效手段。在分布式图计算中,通信所消耗的时间占有很大的比例,通过图分割算法的设计可以有效地降低通信量并实现负载均衡,从而提高分布式图计算的效率,典型的例子包括Metis图分割算法。但是,用现有的图分割算法处理非均衡图数据会造成各个子图之间通信量不均衡,从而影响了计算效率。为了解决这一问题,提出一种新的图分割方法:通信均衡标签交换方法。该方法在保持子图规模一致的基础上,既降低了全图计算所需的通信量,又使各个子图之间的通信量达到均衡。实验结果表明,与Metis等典型的图分割算法相比,提出的图分割方法在各种数据集和集群配置情况下,能降低6%~30%的图计算时间,充分显示了该方法的有效性。