计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (4): 160-166.DOI: 10.3778/j.issn.1002-8331.1609-0184
裔 阳,周绍光,赵鹏飞,胡屹群
YI Yang, ZHOU Shaoguang, ZHAO Pengfei, HU Yiqun
摘要: 传统分类器的构建需要正样本和负样本两类数据。在遥感影像分类中,常出现这样一类情形:感兴趣的地物只有一种。由于标记样本耗时耗力,未标记样本往往容易获取并且包含有用信息,鉴于此,提出了一种基于正样本和未标记样本的遥感图像分类方法(PUL)。首先,根据正样本固有特征并结合支持向量数据描述(SVDD)从未标记集筛选出可信正负样本,再将其从未标记集中剔除;接着将其带入SVM训练,根据未标记集在分类器中的表现设立阈值,再从未标记集中筛选出相对可靠的正负样本;最后是加权SVM(Weighted SVM)过程,初始正样本及提取出的可靠正负样本权重为1,SVM训练筛选出的样本权重范围0~1。为验证PUL的有效性,在遥感影像进行分类实验,并与单类支持向量机(OC-SVM)、高斯数据描述(GDD)、支持向量数据描述(SVDD)、有偏SVM(Biased SVM)以及多类SVM分类对比,实验结果表明PUL提高了分类效果,优于上述单类分类方法及多类SVM方法。