计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (18): 250-255.DOI: 10.3778/j.issn.1002-8331.1706-0133
孙志伟,董亮亮,马永军
SUN Zhiwei, DONG Liangliang, MA Yongjun
摘要: 基于重要点的时间序列线性分段算法能在较好地保留时间序列的全局特征的基础上达到较好的拟合精度。但传统的基于重要点的时间序列分段算法需要指定误差阈值等参数进行分段,这些参数与原始数据相关,用户不方便设定,而且效率和拟合效果有待于进一步提高。为了解决这一问题,提出一种基于时间序列重要点的分段算法——PLR_TSIP,该方法首先综合考虑到了整体拟合误差的大小和序列长度,接着针对优先级较高的分段进行预分段处理以期找到最优的分段;最后在分段时考虑到了分段中最大值点和最小值点的同异向关系,可以一次进行多个重要点的划分。通过多个数据集的实验分析对比,与传统的分段算法相比,减小了拟合误差,取得了更好的拟合效果;与其他重要点分段算法相比,在提高拟合效果的同时,较大地提高了分段效率。