计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (18): 184-187.DOI: 10.3778/j.issn.1002-8331.1705-0401
邱保志,辛 杭
QIU Baozhi, XIN Hang
摘要: 为解决密度聚类算法在处理高维和多密度数据集时聚类结果不精确的问题,提出一种基于共享近邻亲和度(SNNA)的聚类算法。该算法引入[k]近邻和共享近邻,定义共享近邻亲和度作为对象的局部密度度量。算法首先根据亲和度来提取核心点,然后利用广度优先搜索算法对核心点进行聚类,最后对非核心点进行指派即完成整个数据集的聚类。实验结果表明,该算法能够发现任意形状、大小、密度的聚类;与同类算法相比,SNNA算法在处理高维数据时具有较高的聚类准确率。