计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (15): 235-240.DOI: 10.3778/j.issn.1002-8331.1710-0196

• 工程与应用 • 上一篇    下一篇

RNN编码器-解码器在维汉机器翻译中的应用

帕丽旦·木合塔尔,吾守尔·斯拉木,买买提阿依甫,努尔麦麦提·尤鲁瓦斯   

  1. 新疆大学 信息科学与工程学院,乌鲁木齐 830046
  • 出版日期:2018-08-01 发布日期:2018-07-26

Application of RNN encoder-decoder in Uyghur-Chinese machine translation

MUHETAER Palidan, SILAMU Wushouer, Maimaitayifu, YOULUWASI Nuermaimaiti   

  1. College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
  • Online:2018-08-01 Published:2018-07-26

摘要: 将RNN编码器-解码器作为传统的基于短语的PSMT系统的一部分,在传统统计机器翻译基础上,集成RNN解码器-编码器,兼容PSMT创建了新联合模型(RNN+PSMT)。新的模型不仅在维-汉、汉-英机器翻译的应用中取得了成效,而且能够捕捉到语言的规律,使得机器翻译中的一个重要评价指标的BLEU值得到了显著提高。实验结果表明,系统的整体性能超过了传统统计机器翻译。

关键词: 统计机器翻译, 神经网络, RNN编码器-解码器, 长短时记忆, 维吾尔语

Abstract: In this paper, the RNN encoder-decoder is used as part of the traditional phrase-based PSMT system. On the basis of traditional statistical machine translation, the integrated RNN encoder-decoder, compatible with PSMT(Phrase based Statistical Machine Translation) has created a new Uyghur-Chinese neural machine translation model. The new model not only has achieved good results in the application of Uyghur-Chinese and Chinese-English machine translation, but also can capture the rule of language, which makes the BLEU value of an important evaluation indicator greatly improved in Machine Translation. Experimental results show that the overall performance of the system exceeds the traditional statistical machine translation.

Key words: statistical machine translation, neural network, RNN encoder-decoder, long short-term memory, Uyghur