计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (14): 82-88.DOI: 10.3778/j.issn.1002-8331.1703-0253
仇功达1,何 明1,祝朝政1,杨 杰2,刘 勇1
QIU Gongda1, HE Ming1, ZHU Chaozheng1, YANG Jie2, LIU Yong1
摘要: 为解决现有密度聚类算法中参数设置依赖经验、复杂密度环境下聚类精度不高等问题,提出了基于簇间最大密度连通点进行密度簇分割与合并的模糊聚类方法。基于高斯混合模型计算数据点密度,形成高维离散密度空间,通过低精度网格连续数据空间,结合插值算法赋予空白网格相应密度,构建连续高维密度空间。对数据点按密度排序后,利用能否从大于当前密度的点集中连续可达识别密度极大值点,再以密度序实现极大值点的邻域扩张,以扩张矛盾实现稀疏交界处最大密度连通点识别、密度簇分割。最后基于最大密度连通点计算密度簇间隶属度,设定隶属度阈值,实现相关邻簇的合并,完成聚类。通过与多种密度聚类算法进行仿真对比验证,该算法大大降低了经验参数的依赖性,具有全局统一的合并隶属度,提升了多密度下的类识别能力。