计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (11): 116-121.DOI: 10.3778/j.issn.1002-8331.1701-0118
陈 娟1,朱福喜1,2
CHEN Juan1, ZHU Fuxi1,2
摘要: 目前基于PU问题的时间序列分类常采用半监督学习对未标注数据集[U]中数据进行自动标注并构建分类器,但在这种方法中,边界数据样本类别的自动标注难以保证正确性,从而导致构建分类器的效果不佳。针对以上问题,提出一种采用主动学习对未标注数据集[U]中数据进行人工标注从而构建分类器的方法OAL(Only Active Learning),基于投票委员会(QBC)对标注数据集构建多个分类器进行投票,以计算未标注数据样本的类别不一致性,并综合考虑数据样本的分布密度,计算数据样本的信息量,作为主动学习的数据选择策略。鉴于人工标注数据量有限,在上述OAL方法的基础上,将主动学习与半监督学习相结合,即在主动学习迭代过程中,将类别一致性高的部分数据样本自动标注,以增加训练数据中标注数据量,保证构建分类器的训练数据量。实验表明了该方法通过部分人工标注,相比半监督学习,能够为PU数据集构建更高准确率的分类器。