计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (10): 59-65.DOI: 10.3778/j.issn.1002-8331.1711-0048
曾 辉1,王 倩2,夏学文3,4,方 霞1,5
ZENG Hui1, WANG Qian2, XIA Xuewen3,4, FANG Xia1,5
摘要: 为了平衡算法的探测能力和开采能力,提高粒子群算法在不同类型问题上的综合性能,提出了一种基于自适应多种群的粒子群优化算法(PSO-SMS)。算法包含重组、子群规模调整和探测三个模块。在演化初始阶段,整个种群被划分成许多子种群。重组模块使不同子群间可以共享优势信息,有利于单峰和多峰函数的优化。当种群陷入潜在的局部最优时,探测模块可基于搜索过程的一些历史信息,帮助跳出当前的局部最优。通过子群规模调整,每个子种群的大小随着进化的过程而逐渐增加,有利于提高算法在初始阶段的探测能力和后期的开采能力。通过CEC2013的测试集与其他七种PSO算法的比较表明,PSO-SMS算法在解决不同类型的函数优化问题上有着突出的性能表现。