计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (8): 132-136.DOI: 10.3778/j.issn.1002-8331.1510-0216
毛琪波1,余震虹1,王相淳2
MAO Qibo1, YU Zhenhong1, WANG Xiangchun2
摘要: 针对标准粒子群优化算法易陷入局部最优、收敛精度不高的问题,提出一种嵌入列维变异的混合动态粒子群算法(DLPSO)。算法在进化过程中采用动态拓扑Dbest策略以降低粒子趋同性,每次迭代时根据解的好坏将粒子分为全局最优粒子、探索粒子及无目标粒子,并对探索粒子进行分簇,簇内粒子的更新受到全局最优粒子及簇内最优粒子的共同影响;为确保粒子多样性,平衡局部搜索与全局搜索,采用免疫机制与自适应列维变异相结合的方式对粒子进行变异。利用7个测试函数对算法进行性能评价,数值仿真结果表明该算法搜索精度高且稳定性好,具有良好的收敛性能。