计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (7): 177-180.DOI: 10.3778/j.issn.1002-8331.1509-0099
王红梅,付 浩
WANG Hongmei, FU Hao
摘要: 作为一种新型的神经网络模型,脉冲耦合神经网络(PCNN)已经在众多领域得到了应用。针对现有脉冲耦合神经网络图像融合算法存在的不足,提出了一种新的自适应PCNN图像融合算法。提取原始待融合图像的互补特征作为PCNN的外部输入,并通过提取待融合图像的对比度特征自适应确定PCNN的链接强度参数;分析了传统PCNN获取最优图像融合结果的方法,探索性地将结构相似度引入到PCNN融合结果的评价中,为PCNN最优融合结果的获取提供了很好的借鉴作用。通过红外和可见光等图像的仿真实验结果表明,提出的融合算法是有效的。