计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (23): 135-141.DOI: 10.3778/j.issn.1002-8331.1606-0264
张志禹,王彩虹,张一帆
ZHANG Zhiyu, WANG Caihong, ZHANG Yifan
摘要: 模糊C均值(FCM)聚类算法分割图像时,对图像的背景噪声和聚类算法的初始值比较敏感,为了克服这个问题,进而提出了微分进化模糊[C]均值分割算法。为了避免陷入局部极值,首先使用FCM聚类初始化,接着用改进的FCM进行模糊聚类;然后进行初始化种群操作,设置微分进化DE算法的参数,计算种群中每个个体的适应值,最后对满足条件的适应值进行变异、交叉、选择操作。利用DE算法的全局搜索优化能力,有效抑制了局部极值的产生和图像的背景噪声、纹理细节对图像分割效果的影响。还克服了对初值选择敏感的问题,保证图像分割边界的完整性,是一个比较高效的方法,有效地提升了分割效果。DE算法本身具有简单,快速,鲁棒性好等优点,利用这些优点可以有效地克服FCM算法的缺点。